Torous John, Staples Patrick, Barnett Ian, Sandoval Luis R, Keshavan Matcheri, Onnela Jukka-Pekka
1Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA USA.
2Harvard Medical School, Boston, MA USA.
NPJ Digit Med. 2018 Apr 6;1:15. doi: 10.1038/s41746-018-0022-8. eCollection 2018.
Digital phenotyping, or the moment-by-moment quantification of the individual-level human phenotype in situ using data from personal digital devices and smartphones, in particular, holds great potential for behavioral monitoring of patients. However, realizing the potential of digital phenotyping requires understanding of the smartphone as a scientific data collection tool. In this pilot study, we detail a procedure for estimating data quality for phone sensor samples and model the relationship between data quality and future symptom-related survey responses in a cohort with schizophrenia. We find that measures of empirical coverage of collected accelerometer and GPS data, as well as survey timing and survey completion metrics, are significantly associated with future survey scores for a variety of symptom domains. We also find evidence that specific measures of data quality are indicative of domain-specific future survey outcomes. These results suggest that for smartphone-based digital phenotyping, metadata is not independent of patient-reported survey scores, and is therefore potentially useful in predicting future clinical outcomes. This work raises important questions and considerations for future studies; we explore and discuss some of these implications.
数字表型分析,即使用个人数字设备和智能手机的数据对个体层面的人类表型进行实时量化,尤其在患者行为监测方面具有巨大潜力。然而,要实现数字表型分析的潜力,需要将智能手机理解为一种科学数据收集工具。在这项初步研究中,我们详细介绍了一种估算手机传感器样本数据质量的程序,并对精神分裂症队列中数据质量与未来症状相关调查反应之间的关系进行建模。我们发现,收集到的加速度计和GPS数据的经验覆盖度测量值,以及调查时间和调查完成指标,与各种症状领域的未来调查得分显著相关。我们还发现有证据表明,特定的数据质量测量值可指示特定领域的未来调查结果。这些结果表明,对于基于智能手机的数字表型分析,元数据并非独立于患者报告的调查得分,因此在预测未来临床结果方面可能有用。这项工作为未来研究提出了重要问题和考量;我们探讨并讨论了其中一些影响。