Suppr超能文献

情绪障碍中全球定位系统移动性与情绪症状的生态瞬时评估之间的动态双向关联:前瞻性队列研究

Dynamic Bidirectional Associations Between Global Positioning System Mobility and Ecological Momentary Assessment of Mood Symptoms in Mood Disorders: Prospective Cohort Study.

作者信息

Lee Ting-Yi, Chen Ching-Hsuan, Chen I-Ming, Chen Hsi-Chung, Liu Chih-Min, Wu Shu-I, Hsiao Chuhsing Kate, Kuo Po-Hsiu

机构信息

Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.

Department of Obstetrics and Gynecology, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan.

出版信息

J Med Internet Res. 2024 Dec 6;26:e55635. doi: 10.2196/55635.

Abstract

BACKGROUND

Although significant research has explored the digital phenotype in mood disorders, the time-lagged and bidirectional relationship between mood and global positioning system (GPS) mobility remains relatively unexplored. Leveraging the widespread use of smartphones, we examined correlations between mood and behavioral changes, which could inform future scalable interventions and personalized mental health monitoring.

OBJECTIVE

This study aims to investigate the bidirectional time lag relationships between passive GPS data and active ecological momentary assessment (EMA) data collected via smartphone app technology.

METHODS

Between March 2020 and May 2022, we recruited 45 participants (mean age 42.3 years, SD 12.1 years) who were followed up for 6 months: 35 individuals diagnosed with mood disorders referred by psychiatrists and 10 healthy control participants. This resulted in a total of 5248 person-days of data. Over 6 months, we collected 2 types of smartphone data: passive data on movement patterns with nearly 100,000 GPS data points per individual and active data through EMA capturing daily mood levels, including fatigue, irritability, depressed, and manic mood. Our study is limited to Android users due to operating system constraints.

RESULTS

Our findings revealed a significant negative correlation between normalized entropy (r=-0.353; P=.04) and weekly depressed mood as well as between location variance (r=-0.364; P=.03) and depressed mood. In participants with mood disorders, we observed bidirectional time-lagged associations. Specifically, changes in homestay were positively associated with fatigue (β=0.256; P=.03), depressed mood (β=0.235; P=.01), and irritability (β=0.149; P=.03). A decrease in location variance was significantly associated with higher depressed mood the following day (β=-0.015; P=.009). Conversely, an increase in depressed mood was significantly associated with reduced location variance the next day (β=-0.869; P<.001). These findings suggest a dynamic interplay between mood symptoms and mobility patterns.

CONCLUSIONS

This study demonstrates the potential of utilizing active EMA data to assess mood levels and passive GPS data to analyze mobility behaviors, with implications for managing disease progression in patients. Monitoring location variance and homestay can provide valuable insights into this process. The daily use of smartphones has proven to be a convenient method for monitoring patients' conditions. Interventions should prioritize promoting physical movement while discouraging prolonged periods of staying at home.

摘要

背景

尽管已有大量研究探索了情绪障碍中的数字表型,但情绪与全球定位系统(GPS)移动性之间的时间滞后和双向关系仍相对未被充分研究。利用智能手机的广泛使用,我们研究了情绪与行为变化之间的相关性,这可为未来可扩展的干预措施和个性化心理健康监测提供参考。

目的

本研究旨在调查通过智能手机应用程序技术收集的被动GPS数据与主动生态瞬时评估(EMA)数据之间的双向时间滞后关系。

方法

在2020年3月至2022年5月期间,我们招募了45名参与者(平均年龄42.3岁,标准差12.1岁),并对他们进行了6个月的随访:35名由精神科医生转诊的被诊断为情绪障碍的个体和10名健康对照参与者。这总共产生了5248个人日的数据。在6个月的时间里,我们收集了两种类型的智能手机数据:关于运动模式的被动数据,每人有近100,000个GPS数据点,以及通过EMA收集的主动数据,用于捕捉每日情绪水平,包括疲劳、易怒、抑郁和躁狂情绪。由于操作系统的限制,我们的研究仅限于安卓用户。

结果

我们的研究结果显示,标准化熵(r=-0.353;P=0.04)与每周抑郁情绪之间以及位置方差(r=-0.364;P=0.03)与抑郁情绪之间存在显著负相关。在患有情绪障碍的参与者中,我们观察到了双向时间滞后关联。具体而言,居家变化与疲劳(β=0.256;P=0.03)、抑郁情绪(β=0.235;P=0.01)和易怒(β=0.149;P=0.03)呈正相关。位置方差的减少与次日更高的抑郁情绪显著相关(β=-0.015;P=0.009)。相反,抑郁情绪的增加与次日位置方差的减少显著相关(β=-0.869;P<0.001)。这些发现表明情绪症状与移动模式之间存在动态相互作用。

结论

本研究证明了利用主动EMA数据评估情绪水平和被动GPS数据分析移动行为的潜力,这对管理患者的疾病进展具有重要意义。监测位置方差和居家情况可为这一过程提供有价值的见解。事实证明,每天使用智能手机是监测患者病情的便捷方法。干预措施应优先促进身体活动,同时减少长时间居家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6445/11662189/6467bc0fe214/jmir_v26i1e55635_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验