Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA.
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
J Colloid Interface Sci. 2019 Oct 15;554:362-375. doi: 10.1016/j.jcis.2019.06.086. Epub 2019 Jun 26.
TiO nanoparticles (NPs) are widely used in different applications, and potential exposure to these NPs raises concerns about their impact on human health. In contact with biological fluids, proteins adsorb onto NPs to create a protein corona. Protein adsorption is highly dependent on the affinity between exterior amino acid residues and the NP surface. Thus, studying amino acids adsorption onto NPs can provide insight into protein corona formation. Herein, the pH-dependent adsorption of α-amino acids onto TiO NPs in buffered solutions is described. Methods include attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy to analyze molecular interactions and dynamic light scattering (DLS) to measure changes in size and zeta-potential upon adsorption. Depending on the predominant speciation and TiO NP surface charge, adsorption involves a combination of carboxylate and amine group interactions. Gly and Lys reveal a similar trend of higher adsorption with increasing pH. In contrast, Glu adsorption decreases with increasing pH. Ser adsorption onto TiO NPs surfaces is the highest around pH. These differences are attributed to the different speciation of the functional groups within the amino acids and the TiO surface charge at each pH. Under our experimental conditions, multiple surface species coexist at different pH values. Protonated surface species are present for all amino acids at pH 2. At pH 9, Lys and Glu adsorbate spectra have new peaks at 1740 cm and 1744 cm, respectively. This is a possible result of surface-induced deprotonation of the amine group and proton transfer to the carboxylate. Analyzing the pH-dependent adsorption of amino acids can provide a better understanding of biomolecule-surface interactions in in vivo and different biological milieu.
TiO 纳米粒子(NPs)广泛应用于不同的领域,而潜在的接触这些 NPs 引起了人们对其对人类健康影响的关注。在与生物流体接触时,蛋白质会吸附在 NPs 上形成蛋白质冠。蛋白质的吸附高度依赖于氨基酸残基与 NP 表面之间的亲和力。因此,研究氨基酸吸附到 NPs 上可以深入了解蛋白质冠的形成。在此,描述了缓冲溶液中 pH 值对 α-氨基酸在 TiO NPs 上吸附的影响。研究方法包括衰减全反射傅里叶变换红外(ATR-FTIR)光谱分析分子相互作用和动态光散射(DLS)测量吸附前后粒径和zeta 电位的变化。根据主要的形态和 TiO NP 表面电荷,吸附涉及羧酸盐和胺基相互作用的组合。甘氨酸(Gly)和赖氨酸(Lys)的吸附量随 pH 值的增加而增加,呈现出相似的趋势。相比之下,谷氨酸(Glu)的吸附量随 pH 值的增加而减少。丝氨酸(Ser)在 TiO NPs 表面的吸附量在 pH 值左右最高。这些差异归因于氨基酸中官能团的不同形态和每个 pH 值下 TiO 表面电荷的不同。在我们的实验条件下,不同 pH 值下存在多种表面物种共存。在 pH 2 时,所有氨基酸都存在质子化的表面物种。在 pH 9 时,Lys 和 Glu 吸附物的光谱在 1740 cm 和 1744 cm 处分别出现新的峰。这可能是由于胺基的表面诱导去质子化和质子向羧酸盐的转移。分析氨基酸的 pH 值依赖性吸附可以更好地理解体内和不同生物环境中生物分子-表面相互作用。