Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland.
Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland.
EBioMedicine. 2019 Aug;46:184-192. doi: 10.1016/j.ebiom.2019.07.020. Epub 2019 Jul 12.
Interpretative reading of antimicrobial susceptibility test (AST) results allows inferring biochemical resistance mechanisms from resistance phenotypes. For aminoglycosides, however, correlations between resistance pathways inferred on the basis of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints and expert rules versus genotypes are generally poor. This study aimed at developing and validating a decision tree based on resistance phenotypes determined by disc diffusion and based on epidemiological cut-offs (ECOFFs) to infer the corresponding resistance mechanisms in Escherichia coli.
Phenotypic antibiotic susceptibility of thirty wild-type and 458 aminoglycoside-resistant E. coli clinical isolates was determined by disc diffusion and the genomes were sequenced. Based on well-defined cut-offs, we developed a phenotype-based algorithm (Aminoglycoside Resistance Mechanism Inference Algorithm - ARMIA) to infer the biochemical mechanisms responsible for the corresponding aminoglycoside resistance phenotypes. The mechanisms inferred from susceptibility to kanamycin, tobramycin and gentamicin were analysed using ARMIA- or EUCAST-based AST interpretation and validated by whole genome sequencing (WGS) of the host bacteria.
ARMIA-based inference of resistance mechanisms and WGS data were congruent in 441/458 isolates (96·3%). In contrast, there was a poor correlation between resistance mechanisms inferred using EUCAST CBPs/expert rules and WGS data (418/488, 85·6%). Based on the assumption that resistance mechanisms can result in therapeutic failure, EUCAST produced 63 (12·9%) very major errors (vME), compared to only 2 (0·4%) vME with ARMIA. When used for detection and identification of resistance mechanisms, ARMIA resolved >95% vMEs generated by EUCAST-based AST interpretation.
This study demonstrates that ECOFF-based analysis of AST data of only four aminoglycosides provides accurate information on the resistance mechanisms in E. coli. Since aminoglycoside resistance mechanisms, despite having in certain cases a minimal effect on the minimal inhibitory concentration, may compromise the bactericidal activity of aminoglycosides, prompt detection of resistance mechanisms is crucial for therapy. Using ARMIA as an interpretative rule set for editing AST results allows for better predictions of in vivo activity of this drug class.
从药敏试验(AST)结果的解读推断出生化耐药机制,可以根据耐药表型推断出来。然而,对于氨基糖苷类药物,根据欧洲抗菌药物敏感性试验委员会(EUCAST)临床折点和专家规则推断出的耐药途径与基因型之间的相关性通常较差。本研究旨在开发和验证一种基于纸片扩散法确定的耐药表型和基于流行病学折点(ECOFFs)的决策树,以推断大肠埃希菌相应的耐药机制。
采用纸片扩散法测定 30 株野生型和 458 株氨基糖苷类耐药大肠埃希菌临床分离株的表型抗生素药敏性,并对基因组进行测序。根据明确的截止值,我们开发了一种基于表型的算法(氨基糖苷类耐药机制推断算法-ARMIA),以推断与相应氨基糖苷类耐药表型相关的生化机制。通过 ARMIA 或 EUCAST 基于 AST 解释分析推断出对卡那霉素、妥布霉素和庆大霉素的敏感性机制,并通过宿主细菌的全基因组测序(WGS)进行验证。
基于 ARMIA 的耐药机制推断与 WGS 数据在 441/458 株(96.3%)中一致。相比之下,EUCAST 基于 CBPs/专家规则推断的耐药机制与 WGS 数据之间的相关性较差(418/488,85.6%)。基于耐药机制可能导致治疗失败的假设,EUCAST 产生了 63 个(12.9%)非常大的错误(vME),而使用 ARMIA 仅产生了 2 个(0.4%)vME。当用于检测和鉴定耐药机制时,ARMIA 解决了 EUCAST 基于 AST 解释产生的 >95%vME。
本研究表明,仅基于四种氨基糖苷类药物的 AST 数据的 ECOFF 分析可提供有关大肠埃希菌耐药机制的准确信息。由于氨基糖苷类耐药机制尽管对最小抑菌浓度有一定影响,但可能会降低氨基糖苷类药物的杀菌活性,因此及时检测耐药机制对于治疗至关重要。使用 ARMIA 作为 AST 结果的解释规则集可以更好地预测此类药物的体内活性。