Andrews Reed W, Jones Cody, Reed Matthew D, Jones Aaron M, Ha Sieu D, Jura Michael P, Kerckhoff Joseph, Levendorf Mark, Meenehan Seán, Merkel Seth T, Smith Aaron, Sun Bo, Weinstein Aaron J, Rakher Matthew T, Ladd Thaddeus D, Borselli Matthew G
HRL Laboratories, LLC, Malibu, CA, USA.
Nat Nanotechnol. 2019 Aug;14(8):747-750. doi: 10.1038/s41565-019-0500-4. Epub 2019 Jul 15.
Quantum computation requires qubits that satisfy often-conflicting criteria, which include long-lasting coherence and scalable control. One approach to creating a suitable qubit is to operate in an encoded subspace of several physical qubits. Although such encoded qubits may be particularly susceptible to leakage out of their computational subspace, they can be insensitive to certain noise processes and can also allow logical control with a single type of entangling interaction while maintaining favourable features of the underlying physical system. Here we demonstrate high-fidelity operation of an exchange-only qubit encoded in a subsystem of three coupled electron spins confined in gated, isotopically enhanced silicon quantum dots. This encoding requires neither high-frequency electric nor magnetic fields for control, and instead relies exclusively on the exchange interaction, which is highly local and can be modulated with a large on-off ratio using only fast voltage pulses. It is also compatible with very low and gradient-free magnetic field environments, which simplifies integration with superconducting materials. We developed and employed a modified blind randomized benchmarking protocol that determines both computational and leakage errors, and found that unitary operations have an average total error of 0.35%, with half of that, 0.17%, coming from leakage driven by interactions with substrate nuclear spins. The combination of this proven performance with complete control via gate voltages makes the exchange-only qubit especially attractive for use in many-qubit systems.
量子计算需要满足通常相互冲突标准的量子比特,这些标准包括持久的相干性和可扩展的控制。创建合适量子比特的一种方法是在几个物理量子比特的编码子空间中进行操作。尽管这种编码量子比特可能特别容易泄漏出其计算子空间,但它们可能对某些噪声过程不敏感,并且还可以在保持基础物理系统有利特性的同时,通过单一类型的纠缠相互作用实现逻辑控制。在这里,我们展示了一种仅通过交换进行编码的量子比特的高保真操作,该量子比特编码在三个耦合电子自旋的子系统中,这些电子自旋被限制在门控的、同位素增强的硅量子点中。这种编码既不需要高频电场也不需要磁场来进行控制,而是完全依赖于交换相互作用,这种相互作用具有高度的局部性,并且仅使用快速电压脉冲就可以以很大的开关比进行调制。它还与非常低且无梯度的磁场环境兼容,这简化了与超导材料的集成。我们开发并采用了一种改进的盲随机基准测试协议,该协议可以确定计算误差和泄漏误差,并发现酉操作的平均总误差为0.35%,其中一半,即0.17%,来自与衬底核自旋相互作用导致的泄漏。这种经过验证的性能与通过栅极电压实现的完全控制相结合,使得仅通过交换进行编码的量子比特在多量子比特系统中使用时特别有吸引力。