Wong Weng Kee, Yin Yue, Zhou Julie
Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095-1772, USA.
Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 2Y2.
J Comput Graph Stat. 2019;28(1):61-73. doi: 10.1080/10618600.2018.1476250. Epub 2018 Aug 20.
We use semi-definite programming (SDP) to find a variety of optimal designs for multiresponse linear models with multiple factors, and for the first time, extend the methodology to find optimal designs for multi-response nonlinear models and generalized linear models with multiple factors. We construct transformations that (i) facilitate improved formulation of the optimal design problems into SDP problems, (ii) enable us to extend SDP methodology to find optimal designs from linear models to nonlinear multi-response models with multiple factors and (iii) correct erroneously reported optimal designs in the literature caused by formulation issues. We also derive invariance properties of optimal designs and their dependence on the covariance matrix of the correlated errors, which are helpful for reducing the computation time for finding optimal designs. Our applications include finding A-, A -, c- and D-optimal designs for multi-response multi-factor polynomial models, locally c- and D-optimal designs for a bivariate response model and for a bivariate Probit model useful in the biosciences.
我们使用半定规划(SDP)为具有多个因素的多响应线性模型找到各种最优设计,并且首次将该方法扩展到为具有多个因素的多响应非线性模型和广义线性模型找到最优设计。我们构建了一些变换,这些变换(i)有助于将最优设计问题更好地表述为SDP问题,(ii)使我们能够将SDP方法从线性模型扩展到具有多个因素的非线性多响应模型以找到最优设计,以及(iii)纠正文献中由于表述问题而错误报告的最优设计。我们还推导了最优设计的不变性性质及其对相关误差协方差矩阵的依赖性,这有助于减少寻找最优设计的计算时间。我们的应用包括为多响应多因素多项式模型找到A -、A -、c -和D -最优设计,为双变量响应模型以及生物科学中有用的双变量Probit模型找到局部c -和D -最优设计。