Suppr超能文献

基于半定规划的多因素多响应非线性回归模型的最优设计

Optimal Designs for Multi-Response Nonlinear Regression Models With Several Factors via Semidefinite Programming.

作者信息

Wong Weng Kee, Yin Yue, Zhou Julie

机构信息

Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095-1772, USA.

Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 2Y2.

出版信息

J Comput Graph Stat. 2019;28(1):61-73. doi: 10.1080/10618600.2018.1476250. Epub 2018 Aug 20.

Abstract

We use semi-definite programming (SDP) to find a variety of optimal designs for multiresponse linear models with multiple factors, and for the first time, extend the methodology to find optimal designs for multi-response nonlinear models and generalized linear models with multiple factors. We construct transformations that (i) facilitate improved formulation of the optimal design problems into SDP problems, (ii) enable us to extend SDP methodology to find optimal designs from linear models to nonlinear multi-response models with multiple factors and (iii) correct erroneously reported optimal designs in the literature caused by formulation issues. We also derive invariance properties of optimal designs and their dependence on the covariance matrix of the correlated errors, which are helpful for reducing the computation time for finding optimal designs. Our applications include finding A-, A -, c- and D-optimal designs for multi-response multi-factor polynomial models, locally c- and D-optimal designs for a bivariate response model and for a bivariate Probit model useful in the biosciences.

摘要

我们使用半定规划(SDP)为具有多个因素的多响应线性模型找到各种最优设计,并且首次将该方法扩展到为具有多个因素的多响应非线性模型和广义线性模型找到最优设计。我们构建了一些变换,这些变换(i)有助于将最优设计问题更好地表述为SDP问题,(ii)使我们能够将SDP方法从线性模型扩展到具有多个因素的非线性多响应模型以找到最优设计,以及(iii)纠正文献中由于表述问题而错误报告的最优设计。我们还推导了最优设计的不变性性质及其对相关误差协方差矩阵的依赖性,这有助于减少寻找最优设计的计算时间。我们的应用包括为多响应多因素多项式模型找到A -、A -、c -和D -最优设计,为双变量响应模型以及生物科学中有用的双变量Probit模型找到局部c -和D -最优设计。

相似文献

1
Optimal Designs for Multi-Response Nonlinear Regression Models With Several Factors via Semidefinite Programming.
J Comput Graph Stat. 2019;28(1):61-73. doi: 10.1080/10618600.2018.1476250. Epub 2018 Aug 20.
2
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.
Int Stat Rev. 2015 Aug 1;83(2):239-262. doi: 10.1111/insr.12073. Epub 2014 Oct 14.
3
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Chemometr Intell Lab Syst. 2016 Feb 15;151:153-163. doi: 10.1016/j.chemolab.2015.12.014.
4
Using SeDuMi to find various optimal designs for regression models.
Stat Pap (Berl). 2019 Oct;60(5):1583-1603. doi: 10.1007/s00362-017-0887-7. Epub 2017 Feb 27.
5
Optimum designs for clinical trials in personalized medicine when response variance depends on treatment.
J Biopharm Stat. 2024 Aug 31:1-18. doi: 10.1080/10543406.2024.2395548.
6
-optimal designs for hierarchical linear models: an equivalence theorem and a nature-inspired meta-heuristic algorithm.
Soft comput. 2021;25(21):13549-13565. doi: 10.1007/s00500-021-06061-0. Epub 2021 Aug 7.
7
A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination.
J Multivar Anal. 2015 Mar;135:11-24. doi: 10.1016/j.jmva.2014.11.006. Epub 2014 Dec 11.
8
9
Standardized maximim -optimal designs for enzyme kinetic inhibition models.
Chemometr Intell Lab Syst. 2017 Oct 15;169:79-86. doi: 10.1016/j.chemolab.2017.08.009. Epub 2017 Sep 6.

引用本文的文献

1
An Efficient Way to Find Optimal Crossover Designs Using CVX for Precision Medicine.
J Data Sci Stat Vis. 2024 Apr;4(3). doi: 10.52933/jdssv.v4i3.83. Epub 2024 Jun 4.

本文引用的文献

1
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Chemometr Intell Lab Syst. 2016 Feb 15;151:153-163. doi: 10.1016/j.chemolab.2015.12.014.
2
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.
Int Stat Rev. 2015 Aug 1;83(2):239-262. doi: 10.1111/insr.12073. Epub 2014 Oct 14.
3
Optimal dose-finding designs with correlated continuous and discrete responses.
Stat Med. 2012 Feb 10;31(3):217-34. doi: 10.1002/sim.4388. Epub 2011 Dec 12.
4
Two-stage design for dose-finding that accounts for both efficacy and safety.
Stat Med. 2008 Nov 10;27(25):5156-76. doi: 10.1002/sim.3356.
5
Dose finding designs for continuous responses and binary utility.
J Biopharm Stat. 2007;17(6):1085-96. doi: 10.1080/10543400701645132.
6
Optimal design for multivariate response pharmacokinetic models.
J Pharmacokinet Pharmacodyn. 2006 Apr;33(2):97-124. doi: 10.1007/s10928-006-9009-1. Epub 2006 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验