Suppr超能文献

具有相关连续和离散响应的最佳剂量发现设计。

Optimal dose-finding designs with correlated continuous and discrete responses.

机构信息

Research Statistics Unit, Biomedical Data Sciences, GlaxoSmithKline, PO Box 5089, Collegeville, PA 19426, USA.

出版信息

Stat Med. 2012 Feb 10;31(3):217-34. doi: 10.1002/sim.4388. Epub 2011 Dec 12.

Abstract

In dose-finding clinical studies, it is common that multiple endpoints are of interest. For instance, in phase I/II studies, efficacy and toxicity are often the primary endpoints, which are observed simultaneously and which need to be evaluated together. Motivated by this, we confine ourselves to bivariate responses and focus on the most analytically difficult case: a mixture of continuous and categorical responses. We adopt the bivariate probit dose-response model and quantify our goal by a utility function. We study locally optimal designs, two-stage optimal designs, and fully adaptive designs under different ethical and cost constraints in the experiments. We assess the performance of two-stage designs and fully adaptive designs via simulations. Our simulations suggest that the two-stage designs are as efficient as and may be more efficient than the fully adaptive designs if there is a moderate sample size in the initial stage. In addition, two-stage designs are easier to construct and implement and thus can be a useful approach in practice.

摘要

在剂量发现临床研究中,通常会涉及多个感兴趣的终点。例如,在 I/II 期研究中,疗效和毒性通常是主要终点,它们是同时观察到的,需要一起评估。受此启发,我们将自己限制在双变量反应范围内,并专注于最具分析难度的情况:连续和分类反应的混合。我们采用双变量概率比剂量反应模型,并通过效用函数来量化我们的目标。我们在不同的伦理和成本约束下研究了实验中的局部最优设计、两阶段最优设计和完全自适应设计。我们通过模拟评估了两阶段设计和完全自适应设计的性能。我们的模拟表明,如果在初始阶段有一个中等的样本量,那么两阶段设计与完全自适应设计一样高效,甚至可能更高效。此外,两阶段设计更易于构建和实施,因此在实践中是一种有用的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验