Suppr超能文献

使用SeDuMi来寻找回归模型的各种最优设计。

Using SeDuMi to find various optimal designs for regression models.

作者信息

Wong Weng Kee, Yin Yue, Zhou Julie

机构信息

Department of Biostatistics, University of California, Los Angeles, CA 90095-1772, USA.

Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 2Y2.

出版信息

Stat Pap (Berl). 2019 Oct;60(5):1583-1603. doi: 10.1007/s00362-017-0887-7. Epub 2017 Feb 27.

Abstract

We introduce a powerful and yet seldom used numerical approach in statistics for solving a broad class of optimization problems where the search space is discretized. This optimization tool is widely used in engineering for solving semidefinite programming (SDP) problems and is called SeDuMi (self-dual minimization). We focus on optimal design problems and demonstrate how to formulate A-, A -, c-, I-, and L-optimal design problems as SDP problems and show how they can be effectively solved by SeDuMi in MATLAB. We also show the numerical approach is flexible by applying it to further find optimal designs based on the weighted least squares estimator or when there are constraints on the weight distribution of the sought optimal design. For approximate designs, the optimality of the SDP-generated designs can be verified using the Kiefer-Wolfowitz equivalence theorem. SDP also finds optimal designs for nonlinear regression models commonly used in social and biomedical research. Several examples are presented for linear and nonlinear models.

摘要

我们介绍一种统计学中强大但很少使用的数值方法,用于解决一大类搜索空间离散化的优化问题。这种优化工具在工程领域广泛用于解决半定规划(SDP)问题,被称为SeDuMi(自对偶最小化)。我们专注于最优设计问题,展示如何将A -、A -、c -、I - 和L - 最优设计问题表述为SDP问题,并说明如何在MATLAB中通过SeDuMi有效解决这些问题。我们还表明,通过将其应用于基于加权最小二乘估计器进一步寻找最优设计,或在所寻求的最优设计的权重分布存在约束时,该数值方法具有灵活性。对于近似设计,可使用 Kiefer - Wolfowitz 等价定理验证SDP生成设计的最优性。SDP还能为社会和生物医学研究中常用的非线性回归模型找到最优设计。文中给出了线性和非线性模型的几个示例。

相似文献

1
Using SeDuMi to find various optimal designs for regression models.
Stat Pap (Berl). 2019 Oct;60(5):1583-1603. doi: 10.1007/s00362-017-0887-7. Epub 2017 Feb 27.
2
Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.
Chemometr Intell Lab Syst. 2016 Feb 15;151:153-163. doi: 10.1016/j.chemolab.2015.12.014.
3
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.
Int Stat Rev. 2015 Aug 1;83(2):239-262. doi: 10.1111/insr.12073. Epub 2014 Oct 14.
4
Optimal Designs for Multi-Response Nonlinear Regression Models With Several Factors via Semidefinite Programming.
J Comput Graph Stat. 2019;28(1):61-73. doi: 10.1080/10618600.2018.1476250. Epub 2018 Aug 20.
5
-optimal designs for hierarchical linear models: an equivalence theorem and a nature-inspired meta-heuristic algorithm.
Soft comput. 2021;25(21):13549-13565. doi: 10.1007/s00500-021-06061-0. Epub 2021 Aug 7.
6
A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination.
J Multivar Anal. 2015 Mar;135:11-24. doi: 10.1016/j.jmva.2014.11.006. Epub 2014 Dec 11.
7
8
Standardized maximim -optimal designs for enzyme kinetic inhibition models.
Chemometr Intell Lab Syst. 2017 Oct 15;169:79-86. doi: 10.1016/j.chemolab.2017.08.009. Epub 2017 Sep 6.
9
Phase transitions in semidefinite relaxations.
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2218-23. doi: 10.1073/pnas.1523097113. Epub 2016 Mar 21.
10
Certifiably Optimal Outlier-Robust Geometric Perception: Semidefinite Relaxations and Scalable Global Optimization.
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):2816-2834. doi: 10.1109/TPAMI.2022.3179463. Epub 2023 Feb 3.

本文引用的文献

1
A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination.
J Multivar Anal. 2015 Mar;135:11-24. doi: 10.1016/j.jmva.2014.11.006. Epub 2014 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验