Wong Weng Kee, Yin Yue, Zhou Julie
Department of Biostatistics, University of California, Los Angeles, CA 90095-1772, USA.
Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 2Y2.
Stat Pap (Berl). 2019 Oct;60(5):1583-1603. doi: 10.1007/s00362-017-0887-7. Epub 2017 Feb 27.
We introduce a powerful and yet seldom used numerical approach in statistics for solving a broad class of optimization problems where the search space is discretized. This optimization tool is widely used in engineering for solving semidefinite programming (SDP) problems and is called SeDuMi (self-dual minimization). We focus on optimal design problems and demonstrate how to formulate A-, A -, c-, I-, and L-optimal design problems as SDP problems and show how they can be effectively solved by SeDuMi in MATLAB. We also show the numerical approach is flexible by applying it to further find optimal designs based on the weighted least squares estimator or when there are constraints on the weight distribution of the sought optimal design. For approximate designs, the optimality of the SDP-generated designs can be verified using the Kiefer-Wolfowitz equivalence theorem. SDP also finds optimal designs for nonlinear regression models commonly used in social and biomedical research. Several examples are presented for linear and nonlinear models.
我们介绍一种统计学中强大但很少使用的数值方法,用于解决一大类搜索空间离散化的优化问题。这种优化工具在工程领域广泛用于解决半定规划(SDP)问题,被称为SeDuMi(自对偶最小化)。我们专注于最优设计问题,展示如何将A -、A -、c -、I - 和L - 最优设计问题表述为SDP问题,并说明如何在MATLAB中通过SeDuMi有效解决这些问题。我们还表明,通过将其应用于基于加权最小二乘估计器进一步寻找最优设计,或在所寻求的最优设计的权重分布存在约束时,该数值方法具有灵活性。对于近似设计,可使用 Kiefer - Wolfowitz 等价定理验证SDP生成设计的最优性。SDP还能为社会和生物医学研究中常用的非线性回归模型找到最优设计。文中给出了线性和非线性模型的几个示例。