Suppr超能文献

分层线性模型的最优设计:一个等价定理和一种受自然启发的元启发式算法。

-optimal designs for hierarchical linear models: an equivalence theorem and a nature-inspired meta-heuristic algorithm.

作者信息

Liu Xin, Yue RongXian, Zhang Zizhao, Wong Weng Kee

机构信息

College of Science, Donghua University, Shanghai, 201600 China.

Department of Mathematics, Shanghai Normal University, Shanghai, 200234 China.

出版信息

Soft comput. 2021;25(21):13549-13565. doi: 10.1007/s00500-021-06061-0. Epub 2021 Aug 7.

Abstract

Hierarchical linear models are widely used in many research disciplines and estimation issues for such models are generally well addressed. Design issues are relatively much less discussed for hierarchical linear models but there is an increasing interest as these models grow in popularity. This paper discusses the -optimality for predicting individual parameters in such models and establishes an equivalence theorem for confirming the -optimality of an approximate design. Because the criterion is non-differentiable and requires solving multiple nested optimization problems, it is much harder to find and study -optimal designs analytically. We propose a nature-inspired meta-heuristic algorithm called competitive swarm optimizer (CSO) to generate -optimal designs for linear mixed models with different means and covariance structures. We further demonstrate that CSO is flexible and generally effective for finding the widely used locally -optimal designs for nonlinear models with multiple interacting factors and some of the random effects are correlated. Our numerical results for a few examples suggest that and -optimal designs may be equivalent and we establish that and -optimal designs for hierarchical linear models are equivalent when the models have only a random intercept only. The challenging mathematical question of whether their equivalence applies more generally to other hierarchical models remains elusive.

摘要

分层线性模型在许多研究领域中被广泛使用,并且此类模型的估计问题通常得到了很好的解决。对于分层线性模型,设计问题的讨论相对较少,但随着这些模型越来越受欢迎,人们对此的兴趣也在增加。本文讨论了此类模型中预测个体参数的 - 最优性,并建立了一个等价定理来确认近似设计的 - 最优性。由于该准则不可微且需要解决多个嵌套优化问题,因此通过解析方法找到并研究 - 最优设计要困难得多。我们提出了一种受自然启发的元启发式算法,称为竞争群体优化器(CSO),用于为具有不同均值和协方差结构的线性混合模型生成 - 最优设计。我们进一步证明,CSO 对于为具有多个相互作用因子且一些随机效应相关的非线性模型找到广泛使用的局部 - 最优设计是灵活且普遍有效的。我们几个例子的数值结果表明, 和 - 最优设计可能是等价的,并且我们证明当分层线性模型仅具有随机截距时,其 和 - 最优设计是等价的。它们的等价性是否更普遍地适用于其他分层模型这一具有挑战性的数学问题仍然难以捉摸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d817/8550460/37da6d90bf20/500_2021_6061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验