Suppr超能文献

多壳层TiO@FeO@PPy异质结增强界面极化以提升微波吸收性能

Boosted Interfacial Polarization from Multishell TiO @Fe O @PPy Heterojunction for Enhanced Microwave Absorption.

作者信息

Ding Jingjun, Wang Lei, Zhao Yunhao, Xing Linshen, Yu Xuefeng, Chen Guanyu, Zhang Jie, Che Renchao

机构信息

Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China.

出版信息

Small. 2019 Sep;15(36):e1902885. doi: 10.1002/smll.201902885. Epub 2019 Jul 16.

Abstract

Core@shell structures have been attracting extensive attention to boost microwave absorption (MA) performance due to the unique interfacial polarization. However, it still remains a challenge to synthesize sophisticated 1D semiconductor-based materials with excellent MA competence. Herein, a hierarchical cable-like TiO @Fe O @PPy is fabricated by a sequential process of solvothermal treatment and polymerization. The complex permittivity of ternary composites can be optimized by tunable PPy coating thickness to improve the loss ability. The maximum reflection loss can reach -61.8 dB with a thickness of 3.2 mm while the efficient absorption bandwidth can achieve over 6.0 GHz, which involves the X and Ku band at only a 2.2 mm thickness. Importantly, the heterojunction contacts constructed by PPy-Fe O and Fe O -TiO contribute to the enhanced polarization loss. Besides, the configuration of magnetic Fe O sandwiched between dielectric TiO and PPy facilitates the magnetic stray field to radiate into the TiO core and out of the PPy shell, which significantly promotes magnetic-dielectric synergy. Electron holography validates the distinct charge distribution and magnetic coupling. The new findings might shed light on novel structures for functional core@shell composites and the design of semiconductor-based materials for microwave absorption.

摘要

由于独特的界面极化,核壳结构在提高微波吸收(MA)性能方面一直备受关注。然而,合成具有优异MA性能的复杂一维半导体基材料仍然是一个挑战。在此,通过溶剂热处理和聚合的顺序过程制备了一种分层的电缆状TiO@Fe₂O₃@PPy。三元复合材料的复介电常数可以通过可调的PPy涂层厚度进行优化,以提高损耗能力。最大反射损耗在厚度为3.2 mm时可达-61.8 dB,而有效吸收带宽在仅2.2 mm厚度时可超过6.0 GHz,涵盖X和Ku波段。重要的是,由PPy-Fe₂O₃和Fe₂O₃-TiO构建的异质结接触有助于增强极化损耗。此外,夹在介电TiO和PPy之间的磁性Fe₂O₃的结构有利于磁杂散场辐射到TiO核中并从PPy壳中射出,这显著促进了磁电协同效应。电子全息术验证了明显的电荷分布和磁耦合。这些新发现可能为功能性核壳复合材料的新型结构以及基于半导体的微波吸收材料的设计提供启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验