Suppr超能文献

多州模型在肿瘤学中的早期决策。

A multistate model for early decision-making in oncology.

机构信息

Department of Biostatistics, MDBB 663, F. Hoffmann-La Roche Ltd., Basel, Switzerland.

出版信息

Biom J. 2020 May;62(3):550-567. doi: 10.1002/bimj.201800250. Epub 2019 Jul 16.

Abstract

The development of oncology drugs progresses through multiple phases, where after each phase, a decision is made about whether to move a molecule forward. Early phase efficacy decisions are often made on the basis of single-arm studies based on a set of rules to define whether the tumor improves ("responds"), remains stable, or progresses (response evaluation criteria in solid tumors [RECIST]). These decision rules are implicitly assuming some form of surrogacy between tumor response and long-term endpoints like progression-free survival (PFS) or overall survival (OS). With the emergence of new therapies, for which the link between RECIST tumor response and long-term endpoints is either not accessible yet, or the link is weaker than with classical chemotherapies, tumor response-based rules may not be optimal. In this paper, we explore the use of a multistate model for decision-making based on single-arm early phase trials. The multistate model allows to account for more information than the simple RECIST response status, namely, the time to get to response, the duration of response, the PFS time, and time to death. We propose to base the decision on efficacy on the OS hazard ratio (HR) comparing historical control to data from the experimental treatment, with the latter predicted from a multistate model based on early phase data with limited survival follow-up. Using two case studies, we illustrate feasibility of the estimation of such an OS HR. We argue that, in the presence of limited follow-up and small sample size, and making realistic assumptions within the multistate model, the OS prediction is acceptable and may lead to better early decisions within the development of a drug.

摘要

肿瘤药物的开发经历多个阶段,在每个阶段之后,都会根据是否将分子推进来做出决策。早期疗效决策通常基于基于一组规则来定义肿瘤是否改善(“应答”)、保持稳定或进展(实体瘤反应评估标准 [RECIST])的单臂研究。这些决策规则隐含地假设肿瘤反应和无进展生存期 (PFS) 或总生存期 (OS) 等长期终点之间存在某种形式的替代关系。随着新疗法的出现,RECIST 肿瘤反应与长期终点之间的联系要么无法获得,要么与经典化疗相比联系较弱,基于肿瘤反应的规则可能不是最佳选择。在本文中,我们探讨了使用多状态模型来基于单臂早期阶段试验进行决策。多状态模型允许比简单的 RECIST 反应状态更充分地考虑信息,即达到反应的时间、反应持续时间、PFS 时间和死亡时间。我们建议根据 OS 风险比 (HR) 来做出疗效决策,将历史对照与实验治疗的数据进行比较,后者通过基于早期阶段数据的多状态模型预测,这些数据的生存随访有限。我们通过两个案例研究说明了这种 OS HR 估计的可行性。我们认为,在随访时间有限且样本量较小的情况下,并且在多状态模型中做出现实假设的情况下,OS 预测是可以接受的,并且可能会导致药物开发过程中的早期决策更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验