Suppr超能文献

基于联合模拟无进展生存期和总生存期终点的多状态模型的肿瘤学临床试验设计规划

Oncology Clinical Trial Design Planning Based on a Multistate Model That Jointly Models Progression-Free and Overall Survival Endpoints.

作者信息

Erdmann Alexandra, Beyersmann Jan, Rufibach Kaspar

机构信息

Institute of Statistics, Ulm University, Ulm, Germany.

Product Development Data Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

出版信息

Biom J. 2025 Feb;67(1):e70017. doi: 10.1002/bimj.70017.

Abstract

When planning an oncology clinical trial, the usual approach is to assume proportional hazards and even an exponential distribution for time-to-event endpoints. Often, besides the gold-standard endpoint overall survival (OS), progression-free survival (PFS) is considered as a second confirmatory endpoint. We use a survival multistate model to jointly model these two endpoints and find that neither exponential distribution nor proportional hazards will typically hold for both endpoints simultaneously. The multistate model provides a stochastic process approach to model the dependency of such endpoints neither requiring latent failure times nor explicit dependency modeling such as copulae. We use the multistate model framework to simulate clinical trials with endpoints OS and PFS and show how design planning questions can be answered using this approach. In particular, nonproportional hazards for at least one of the endpoints are a consequence of OS and PFS being dependent and are naturally modeled to improve planning. We then illustrate how clinical trial design can be based on simulations from a multistate model. Key applications are coprimary endpoints and group-sequential designs. Simulations for these applications show that the standard simplifying approach may very well lead to underpowered or overpowered clinical trials. Our approach is quite general and can be extended to more complex trial designs, further endpoints, and other therapeutic areas. An R package is available on CRAN.

摘要

在规划肿瘤学临床试验时,通常的方法是假设事件发生时间终点服从比例风险甚至指数分布。通常,除了金标准终点总生存期(OS)外,无进展生存期(PFS)也被视为第二个确证性终点。我们使用生存多状态模型对这两个终点进行联合建模,发现指数分布和比例风险通常都不会同时适用于这两个终点。多状态模型提供了一种随机过程方法来对这些终点的依赖性进行建模,既不需要潜在失败时间,也不需要诸如copulae之类的显式依赖性建模。我们使用多状态模型框架来模拟具有终点OS和PFS的临床试验,并展示如何使用这种方法回答设计规划问题。特别是,至少一个终点的非比例风险是OS和PFS相互依赖的结果,并且可以通过自然建模来改进规划。然后,我们说明如何基于多状态模型的模拟进行临床试验设计。关键应用包括共同主要终点和组序贯设计。这些应用的模拟表明,标准的简化方法很可能导致临床试验的效能不足或效能过高。我们的方法非常通用,可以扩展到更复杂的试验设计、更多终点以及其他治疗领域。CRAN上提供了一个R包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a68c/11650109/98831e027acf/BIMJ-67-e70017-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验