Department of Electrical Engineering, Kwangwoon University, 447-1 Wolgye, Nowon, Seoul, 01897, South Korea.
Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea.
Sci Rep. 2019 Jul 16;9(1):10297. doi: 10.1038/s41598-019-45936-z.
An essential requirement for bio/chemical sensors and electronic nose systems is the ability to detect the intended target at room temperature with high selectivity. We report a reduced graphene oxide (rGO)-based gas sensor functionalized with a peptide receptor to detect dinitrotoluene (DNT), which is a byproduct of trinitrotoluene (TNT). We fabricated the multi-arrayed rGO sensor using spin coating and a standard microfabrication technique. Subsequently, the rGO was subjected to photolithography and an etching process, after which we prepared the DNT-specific binding peptide (DNT-bp, sequence: His-Pro-Asn-Phe-Se r-Lys-Tyr-IleLeu-HisGln-Arg-Cys) and DNT non-specific binding peptide (DNT-nbp, sequence: Thr-Ser-Met-Leu-Leu-Met-Ser-Pro-Lys-His-Gln-Ala-Cys). These two peptides were prepared to function as highly specific and highly non-specific (for the control experiment) peptide receptors, respectively. By detecting the differential signals between the DNT-bp and DNT-nbp functionalized rGO sensor, we demonstrated the ability of 2,4-dinitrotoluene (DNT) targets to bind to DNT-specific binding peptide surfaces, showing good sensitivity and selectivity. The advantage of using the differential signal is that it eliminates unwanted electrical noise and/or environmental effects. We achieved sensitivity of 27 ± 2 × 10 per part per billion (ppb) for the slope of resistance change versus DNT gas concentration of 80, 160, 240, 320, and 480 ppm, respectively. By sequentially flowing DNT vapor (320 ppb), acetone (100 ppm), toluene (1 ppm), and ethanol (100 ppm) onto the rGO sensors, the change in the signal of rGO in the presence of DNT gas is 6400 × 10 per ppb whereas the signals from the other gases show no changes, representing highly selective performance. Using this platform, we were also able to regenerate the surface by simply purging with N.
对于生物/化学传感器和电子鼻系统来说,一个基本的要求是能够在室温下以高选择性检测目标物。我们报告了一种基于还原氧化石墨烯(rGO)的气体传感器,该传感器用肽受体功能化,用于检测二硝基甲苯(DNT),DNT 是三硝基甲苯(TNT)的副产品。我们使用旋涂和标准微制造技术制造了多阵列 rGO 传感器。然后,rGO 经过光刻和蚀刻处理,之后我们制备了 DNT 特异性结合肽(DNT-bp,序列:His-Pro-Asn-Phe-Ser-Lys-Tyr-Ile-Leu-HisGln-Arg-Cys)和 DNT 非特异性结合肽(DNT-nbp,序列:Thr-Ser-Met-Leu-Leu-Met-Ser-Pro-Lys-His-Gln-Ala-Cys)。这两种肽分别作为高度特异性和高度非特异性(用于对照实验)肽受体。通过检测 DNT-bp 和 DNT-nbp 功能化 rGO 传感器之间的差分信号,我们证明了 2,4-二硝基甲苯(DNT)靶标与 DNT 特异性结合肽表面结合的能力,表现出良好的灵敏度和选择性。使用差分信号的优点是它消除了不需要的电噪声和/或环境影响。我们实现了对 80、160、240、320 和 480 ppm 浓度范围内 DNT 气体的电阻变化与 DNT 气体浓度的斜率的灵敏度分别为 27 ± 2 × 10 每十亿分之(ppb)。通过将 DNT 蒸气(320 ppb)、丙酮(100 ppm)、甲苯(1 ppm)和乙醇(100 ppm)依次流到 rGO 传感器上,rGO 在存在 DNT 气体时的信号变化为 6400 × 10 每 ppb,而其他气体的信号没有变化,表现出高度选择性。使用该平台,我们还能够通过简单地用氮气吹扫来再生表面。