Herrera Gabriel Paes, Constantino Michel, Tabak Benjamin Miranda, Pistori Hemerson, Su Jen-Je, Naranpanawa Athula
Department of Accounting, Finance and Economics, Griffith University, Nathan Campus, Queensland 4111, Australia.
Department of Environmental Sciences and Sustainability, Dom Bosco Catholic University, Campo Grande, MS, Brazil.
Data Brief. 2019 Jun 12;25:104122. doi: 10.1016/j.dib.2019.104122. eCollection 2019 Aug.
This article contains the data related to the research article "Long-term forecast of energy commodities price using machine learning" (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied, i.e. a hybridization of traditional econometric models, artificial neural networks, random forests, and the no-change method. Data is divided into 80-20% ratio for training and test respectively and RMSE, MAPE, and M-DM test used for performance evaluation. Other methods can be applied to the dataset and used as a benchmark.
本文包含与研究论文《使用机器学习对能源商品价格进行长期预测》(埃雷拉等人,2019年)相关的数据。数据集包含六种主要能源商品近四十年的月度价格。应用了四种方法,即传统计量经济学模型、人工神经网络、随机森林和无变化方法的混合。数据分别按80 - 20%的比例划分为训练集和测试集,并使用均方根误差(RMSE)、平均绝对百分比误差(MAPE)和M - DM检验进行性能评估。其他方法也可应用于该数据集并用作基准。