Suppr超能文献

通过机器学习回归、分类和统计技术进行肺癌生存预测。

Lung Cancer Survival Prediction via Machine Learning Regression, Classification, and Statistical Techniques.

作者信息

Bartholomai James A, Frieboes Hermann B

机构信息

Dept. of Bioengineering University of Louisville Louisville, KY.

出版信息

Proc IEEE Int Symp Signal Proc Inf Tech. 2018 Dec;2018:632-637. doi: 10.1109/ISSPIT.2018.8642753. Epub 2019 Feb 18.

Abstract

A regression model is developed to predict survival time in months for lung cancer patients. It was previously shown that predictive models perform accurately for short survival times of less than 6 months; however, model accuracy is reduced when attempting to predict longer survival times. This study employs an approach for which regression models are used in combination with a classification model to predict survival time. A set of de-identified lung cancer patient data was obtained from the Surveillance, Epidemiology, and End Results (SEER) database. The models use a subset of factors selected by ANOVA. Model accuracy is measured by a confusion matrix for classification and by Root Mean Square Error (RMSE) for regression. Random Forests are used for classification, while general Linear Regression, Gradient Boosted Machines (GBM), and Random Forests are used for regression. The regression results show that RF had the best performance for survival times ≤6 and >24 months (RMSE 10.52 and 20.51, respectively), while GBM performed best for 7-24 months (RMSE 15.65). Comparison plots of the results further indicate that the regression models perform better for shorter survival times than the RMSE values are able to reflect.

摘要

开发了一种回归模型来预测肺癌患者以月为单位的生存时间。先前的研究表明,预测模型对于短于6个月的生存时间预测准确;然而,在尝试预测更长的生存时间时,模型准确性会降低。本研究采用一种方法,将回归模型与分类模型结合起来预测生存时间。从监测、流行病学和最终结果(SEER)数据库中获取了一组经过去识别处理的肺癌患者数据。这些模型使用通过方差分析选择的因素子集。模型准确性通过分类的混淆矩阵和回归的均方根误差(RMSE)来衡量。随机森林用于分类,而普通线性回归、梯度提升机(GBM)和随机森林用于回归。回归结果表明,对于生存时间≤6个月和>24个月的情况,随机森林表现最佳(RMSE分别为10.52和20.51),而对于7 - 24个月的情况,梯度提升机表现最佳(RMSE为15.65)。结果的比较图进一步表明,回归模型对于较短的生存时间表现优于RMSE值所能反映的情况。

相似文献

4
Lung cancer survival period prediction and understanding: Deep learning approaches.肺癌生存期预测与认识:深度学习方法。
Int J Med Inform. 2021 Apr;148:104371. doi: 10.1016/j.ijmedinf.2020.104371. Epub 2020 Dec 29.
6
Application of unsupervised analysis techniques to lung cancer patient data.将无监督分析技术应用于肺癌患者数据。
PLoS One. 2017 Sep 14;12(9):e0184370. doi: 10.1371/journal.pone.0184370. eCollection 2017.

引用本文的文献

4
A Holistic Approach to Implementing Artificial Intelligence in Lung Cancer.肺癌中实施人工智能的整体方法。
Indian J Surg Oncol. 2025 Feb;16(1):257-278. doi: 10.1007/s13193-024-02079-6. Epub 2024 Sep 5.

本文引用的文献

2
Application of unsupervised analysis techniques to lung cancer patient data.将无监督分析技术应用于肺癌患者数据。
PLoS One. 2017 Sep 14;12(9):e0184370. doi: 10.1371/journal.pone.0184370. eCollection 2017.
4
Probabilistic modeling of short survivability in patients with brain metastasis from lung cancer.肺癌脑转移患者短期生存概率建模。
Comput Methods Programs Biomed. 2015 May;119(3):142-62. doi: 10.1016/j.cmpb.2015.02.005. Epub 2015 Feb 21.
5
Machine learning applications in cancer prognosis and prediction.机器学习在癌症预后和预测中的应用。
Comput Struct Biotechnol J. 2014 Nov 15;13:8-17. doi: 10.1016/j.csbj.2014.11.005. eCollection 2015.
9
Analysis of second primary lung cancers in the SEER database.SEER 数据库中第二原发肺癌的分析。
J Surg Res. 2010 Jul;162(1):1-6. doi: 10.1016/j.jss.2009.12.030. Epub 2010 Jan 25.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验