Suppr超能文献

用于氧电催化的稳定多金属纳米粒子。

Stable Multimetallic Nanoparticles for Oxygen Electrocatalysis.

机构信息

Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States.

Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States.

出版信息

Nano Lett. 2019 Aug 14;19(8):5149-5158. doi: 10.1021/acs.nanolett.9b01523. Epub 2019 Jul 17.

Abstract

Nanostructured catalysts often face an important challenge: poor stability. Many factors contribute to catalytic degradation, including parasitic chemical reactions, phase separation, agglomeration, and dissolution, leading to activity loss especially during long-term catalytic reactions. This challenge is shared by a new family of catalysts, multimetallic nanoparticles, which have emerged owing to their broad tunability and high activity. While significant synthesis-based advances have been made, the stability of these nanostructured catalysts, especially during catalytic reactions, has not been well addressed. In this study, we reveal the critical influence of a synthetic method on the stability of nanostructured catalysts through aprotic oxygen catalysis (Li-O battery) demonstrations. In comparison to the conventional wet impregnation (WI) method, we show that the carbothermal shock (CTS) method dramatically improves the overall structural and chemical stability of the catalyst with the same elemental compositions. For multimetallic compositions (4- and 8-elements), the overall stability of the electrocatalysts as well as the battery lifetime can be further improved by incorporating additional noncatalytically active elements into the individual nanoparticles via CTS. The results offer a new synthetic path toward the stabilization of nanostructured catalysts, where additional reaction schemes beyond oxygen electrocatalysis are foreseeable.

摘要

纳米结构催化剂通常面临一个重要的挑战

稳定性差。许多因素导致催化降解,包括寄生化学反应、相分离、团聚和溶解,导致活性损失,特别是在长期催化反应中。这一挑战是由新兴的多金属纳米粒子这一家族的催化剂共同面临的,它们具有广泛的可调性和高活性。虽然在合成方面取得了重大进展,但这些纳米结构催化剂的稳定性,特别是在催化反应过程中的稳定性,尚未得到很好的解决。在这项研究中,我们通过非质子氧催化(Li-O 电池)的演示揭示了合成方法对纳米结构催化剂稳定性的关键影响。与传统的湿浸渍(WI)方法相比,我们表明,碳热冲击(CTS)方法在相同元素组成的情况下,显著提高了催化剂的整体结构和化学稳定性。对于多金属成分(4 元和 8 元),通过 CTS 将额外的非催化活性元素引入单个纳米颗粒中,可以进一步提高电催化剂的整体稳定性和电池寿命。研究结果为纳米结构催化剂的稳定提供了一种新的合成途径,预计在氧电催化之外还会有更多的反应方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验