Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, de Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands.
Netherlands Heart Institute, PO box 19258, 3501 DG, Utrecht, the Netherlands.
J Physiol. 2019 Sep;597(17):4521-4531. doi: 10.1113/JP277985. Epub 2019 Jul 30.
Titin functions as a molecular spring, and cardiomyocytes are able, through splicing, to control the length of titin. We hypothesized that together with diastolic [Ca ], titin-based stretch pre-activates cardiomyocytes during diastole and is a major determinant of force production in the subsequent contraction. Through this mechanism titin would play an important role in active force development and length-dependent activation. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) result in expression of large, highly compliant titin isoforms. We measured single cardiomyocyte work loops that mimic the cardiac cycle in wild-type (WT) and heterozygous (HET) RBM20-deficient rats. In addition, we studied the role of diastolic [Ca ] in membrane-permeabilized WT and HET cardiomyocytes. Intact cardiomyocytes isolated from HET left ventricles were unable to produce normal levels of work (55% of WT) at low pacing frequencies, but this difference disappeared at high pacing frequencies. Length-dependent activation (force-sarcomere length relationship) was blunted in HET cardiomyocytes, but the force-end-diastolic force relationship was not different between HET and WT cardiomyocytes. To delineate the effects of diastolic [Ca ] and titin pre-activation on force generation, measurements were performed in detergent-permeabilized cardiomyocytes. Cardiac twitches were simulated by transiently exposing permeabilized cardiomyocytes to 2 µm Ca . Increasing diastolic [Ca ] from 1 to 80 nm increased force development twofold in WT. Higher diastolic [Ca ] was needed in HET. These findings are consistent with our hypothesis that pre-activation increases active force development. Highly compliant titin allows cells to function at higher diastolic [Ca ].
肌联蛋白作为一种分子弹簧,心肌细胞能够通过剪接控制肌联蛋白的长度。我们假设,与舒张期 [Ca ]一起,基于肌联蛋白的伸展在舒张期预先激活心肌细胞,是随后收缩中产生力的主要决定因素。通过这种机制,肌联蛋白将在主动力发展和长度依赖性激活中发挥重要作用。剪接因子 RNA 结合基序蛋白 20 (RBM20) 突变导致大的、高顺应性肌联蛋白异构体的表达。我们测量了模拟心脏周期的野生型 (WT) 和杂合型 (HET) RBM20 缺陷型大鼠单个心肌细胞工作环。此外,我们研究了舒张期 [Ca ]在膜通透性 WT 和 HET 心肌细胞中的作用。从 HET 左心室分离的完整心肌细胞在低起搏频率下无法产生正常水平的工作(WT 的 55%),但这种差异在高起搏频率下消失。HET 心肌细胞的长度依赖性激活(力-肌节长度关系)减弱,但 HET 和 WT 心肌细胞的力-舒张末力关系没有差异。为了阐明舒张期 [Ca ]和肌联蛋白预激活对力产生的影响,在去污剂通透性心肌细胞中进行了测量。通过短暂暴露于 2 µm Ca 来模拟心脏抽搐。在 WT 中,将舒张期 [Ca ]从 1 增加到 80 nm 可使力发展增加两倍。在 HET 中需要更高的舒张期 [Ca ]。这些发现与我们的假设一致,即预激活增加主动力发展。高顺应性肌联蛋白允许细胞在更高的舒张期 [Ca ]下发挥作用。