Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Med Phys. 2019 Sep;46(9):4165-4176. doi: 10.1002/mp.13724. Epub 2019 Aug 7.
We have developed a second-generation virtual-pinhole (VP) positron emission tomography (PET) device that can position a flat-panel PET detector around a patient's body using a robotic arm to enhance the contrast recovery coefficient (CRC) and detectability of lesions in any region-of-interest using a whole-body PET/computed tomography (CT) scanner.
We constructed a flat-panel VP-PET device using 32 high-resolution detectors, each containing a 4 4 MPPC array and 16 16 LYSO crystals of 1.0 1.0 3.0 mm each. The flat-panel detectors can be positioned around a patient's body anywhere in the imaging field-of-view (FOV) of a Siemens Biograph 40 PET/CT scanner by a robotic arm. New hardware, firmware and software have been developed to support the additional detector signals without compromising a scanner's native functions. We stepped a Na point source across the axial FOV of the scanner to measure the sensitivity profile of the VP-PET device. We also recorded the coincidence events measured by the scanner detectors and by the VP-PET detectors when imaging phantoms of different sizes. To assess the improvement in the CRC of small lesions, we imaged an elliptical torso phantom measuring 316 228 162 mm that contains spherical tumors with diameters ranging from 3.3 to 11.4 mm with and without the VP-PET device. Images were reconstructed using a list mode Maximum-Likelihood Estimation-Maximization algorithm implemented on multiple graphics processing units (GPUs) to support the unconventional geometries enabled by a VP-PET system. The mean and standard deviation of the CRC were calculated for tumors of different sizes. Monte Carlo simulation was also conducted to image clusters of lesions in a torso phantom using a PET/CT scanner alone or the same scanner equipped with VP-PET devices. Receiver operating characteristic (ROC) curves were analyzed for three system configurations to evaluate the improvement in lesion detectability by the VP-PET device over the native PET/CT scanner.
The repeatability in positioning the flat-panel detectors using a robotic arm is better than 0.15 mm in all three directions. Experimental results show that the average CRC of 3.3, 4.3, and 6.0 mm diameter tumors was 0.82%, 2.90%, and 5.25%, respectively, when measured by the native scanner. The corresponding CRC was 2.73%, 6.21% and 10.13% when imaged by the VP-PET insert device with the flat-panel detector under the torso phantom. These values may be further improved to 4.31%, 9.65% and 18.01% by a future dual-panel VP-PET insert device if DOI detectors are employed to triple its detector efficiency. Monte Carlo simulation results show that the tumor detectability can be improved by a VP-PET device that has a single flat-panel detector. The improvement is greater if the VP-PET device employs a dual-panel design.
We have developed a prototype flat-panel VP-PET device and integrated it with a clinical PET/CT scanner. It significantly enhances the contrast of lesions, especially for those that are borderline detectable by the native scanner, within regions-of-interest specified by users. Simulation demonstrated the enhancement in lesion detectability with the VP-PET device. This technology may become a cost-effective solution for organ-specific imaging tasks.
我们开发了第二代虚拟针孔(VP)正电子发射断层扫描(PET)设备,该设备可以使用机械臂围绕患者的身体放置平板 PET 探测器,从而提高对比度恢复系数(CRC),并使用全身 PET/计算机断层扫描(CT)扫描仪检测任何感兴趣区域的病变。
我们使用 32 个高分辨率探测器构建了一个平板 VP-PET 设备,每个探测器包含一个 4×4 MPPC 阵列和 16×16 个 LYSO 晶体,每个晶体的尺寸为 1.0×1.0×3.0mm。平板探测器可以通过机械臂放置在西门子 Biograph 40 PET/CT 扫描仪的成像视场(FOV)中的任何位置。我们开发了新的硬件、固件和软件,以支持额外的探测器信号,而不会影响扫描仪的本机功能。我们将一个 Na 点源沿扫描仪的轴向 FOV 移动,以测量 VP-PET 设备的灵敏度分布。我们还记录了当使用不同大小的体模成像时,由扫描仪探测器和 VP-PET 探测器测量的符合事件。为了评估对小病变 CRC 的改善,我们对一个 316×228×162mm 的椭圆形躯干体模进行了成像,该体模包含直径为 3.3 至 11.4mm 的球形肿瘤,带有或不带有 VP-PET 设备。使用在多个图形处理单元(GPU)上实现的列表模式最大似然估计-最大化算法重建图像,以支持由 VP-PET 系统启用的非常规几何形状。对于不同大小的肿瘤,计算了 CRC 的均值和标准差。还进行了蒙特卡罗模拟,以使用单独的 PET/CT 扫描仪或相同的配备 VP-PET 设备的扫描仪对躯干体模中的病变簇进行成像。分析了三种系统配置的接收器工作特征(ROC)曲线,以评估 VP-PET 设备对本机 PET/CT 扫描仪提高病变检测能力的效果。
使用机械臂定位平板探测器的重复性在所有三个方向上均优于 0.15mm。实验结果表明,当使用本机扫描仪测量时,直径为 3.3、4.3 和 6.0mm 的肿瘤的平均 CRC 分别为 0.82%、2.90%和 5.25%。当在躯干体模下使用 VP-PET 插入式设备中的平板探测器进行成像时,相应的 CRC 分别为 2.73%、6.21%和 10.13%。如果未来使用 DOI 探测器将其探测器效率提高三倍,则使用双平板 VP-PET 插入式设备,这些值可能进一步提高到 4.31%、9.65%和 18.01%。蒙特卡罗模拟结果表明,VP-PET 设备可以提高肿瘤的检测能力。如果 VP-PET 设备采用双平板设计,则改善效果更大。
我们开发了一种原型平板 VP-PET 设备,并将其与临床 PET/CT 扫描仪集成在一起。它显著提高了对比度,尤其是对于本机扫描仪边缘可检测到的病变,同时也提高了用户指定的感兴趣区域的对比度。模拟表明,VP-PET 设备可以提高病变的检测能力。这项技术可能成为针对特定器官成像任务的一种具有成本效益的解决方案。