Melandri Giovanni, R-Radohery Georges, Beaumont Chloé, de Cripan Sara M, Muller Coralie, Piras Luca, Pereira Maria Alcina, Salvador Andreia Ferreira, Domingo-Almenara Xavier, Bolger Marie, Colombié Sophie, Prigent Sylvain, Arechederra Biotza Gutierrez, Canela Nuria Canela, Pétriacq Pierre
University of Bordeaux, INRAE, UMR 1332 BFP, Villenave d'Ornon 33140, France.
School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf057.
Since the late 2010s, artificial intelligence (AI), encompassing machine learning and propelled by deep learning, has transformed life science research. It has become a crucial tool for advancing the computational analysis of biological processes, the discovery of natural products, and the study of ecosystem dynamics. This review explores how the rapid increase in high-throughput omics data acquisition has driven the need for AI-based analysis in life sciences, with a particular focus on plant sciences, animal sciences, and microbiology. We highlight the role of omics-based predictive analytics in systems biology and innovative AI-based analytical approaches for gaining deeper insights into complex biological systems. Finally, we discuss the importance of FAIR (findable, accessible, interoperable, reusable) principles for omics data, as well as the future challenges and opportunities presented by the increasing use of AI in life sciences.
自2010年代末以来,涵盖机器学习并由深度学习推动的人工智能(AI)已经改变了生命科学研究。它已成为推进生物过程的计算分析、天然产物发现以及生态系统动力学研究的关键工具。本综述探讨了高通量组学数据采集的快速增长如何推动了生命科学中基于人工智能的分析需求,特别关注植物科学、动物科学和微生物学。我们强调了基于组学的预测分析在系统生物学中的作用,以及基于人工智能的创新分析方法,以便更深入地了解复杂的生物系统。最后,我们讨论了组学数据的FAIR(可查找、可访问、可互操作、可重用)原则的重要性,以及生命科学中越来越多地使用人工智能所带来的未来挑战和机遇。