Stern Liron, Bopp Douglas G, Schima Susan A, Maurice Vincent N, Kitching John E
National Institute of Standards and Technology, Time & Frequency Division, 325 Broadway, Boulder, CO, 80305, USA.
Department of Physics, University of Colorado, Boulder, CO, 80309, USA.
Nat Commun. 2019 Jul 17;10(1):3156. doi: 10.1038/s41467-019-11145-5.
The efficient light-matter interaction and discrete level structure of atomic vapors made possible numerous seminal scientific achievements including time-keeping, extreme non-linear interactions, and strong coupling to electric and magnetic fields in quantum sensors. As such, atomic systems can be regarded as a highly resourceful quantum material platform. Recently, the field of thin optical elements with miniscule features has been extensively studied demonstrating an unprecedented ability to control photonic degrees of freedom. Hybridization of atoms with such thin optical devices may offer a material system enhancing the functionality of traditional vapor cells. Here, we demonstrate chip-scale, quantum diffractive optical elements which map atomic states to the spatial distribution of diffracted light. Two foundational diffractive elements, lamellar gratings and Fresnel lenses, are hybridized with atomic vapors demonstrating exceptionally strong frequency-dependent, non-linear and magneto-optic behaviors. Providing the design tools for chip-scale atomic diffractive optical elements develops a path for compact thin quantum-optical elements.
原子蒸气高效的光与物质相互作用及离散能级结构促成了众多具有开创性的科学成就,包括计时、极端非线性相互作用以及量子传感器中与电场和磁场的强耦合。因此,原子系统可被视为一个极具资源潜力的量子材料平台。近来,具有微小特征的薄光学元件领域得到了广泛研究,展现出前所未有的控制光子自由度的能力。原子与这类薄光学器件的杂交可能会提供一种增强传统蒸气室功能的材料系统。在此,我们展示了芯片级量子衍射光学元件,它能将原子态映射到衍射光的空间分布上。两种基础衍射元件,即层状光栅和菲涅耳透镜,与原子蒸气杂交后展现出异常强烈的频率依赖、非线性和磁光行为。为芯片级原子衍射光学元件提供设计工具为紧凑型薄量子光学元件开辟了一条道路。