Li Xin, Wang Jie, Yu Feilong, Chen Jin, Chen Xiaoshuang, Lu Wei, Li Guanhai
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China.
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Light Sci Appl. 2025 Jan 14;14(1):47. doi: 10.1038/s41377-024-01703-y.
In the domain of spectroscopy, miniaturization efforts often face significant challenges, particularly in achieving high spectral resolution and precise construction. Here, we introduce a computational spectrometer powered by a nonlinear photonic memristor with a WSe homojunction. This approach overcomes traditional limitations, such as constrained Fermi level tunability, persistent dark current, and limited photoresponse dimensionality through dynamic energy band modulation driven by palladium (Pd) ion migration. The critical role of Pd ion migration is thoroughly supported by first-principles calculations, numerical simulations, and experimental verification, demonstrating its effectiveness in enhancing device performance. Additionally, we integrate this dynamic modulation with a specialized nonlinear neural network tailored to address the memristor's inherent nonlinear photoresponse. This combination enables our spectrometer to achieve an exceptional peak wavelength accuracy of 0.18 nm and a spectral resolution of 2 nm within the 630-640 nm range. This development marks a significant advancement in the creation of compact, high-efficiency spectroscopic instruments and offers a versatile platform for applications across diverse material systems.
在光谱学领域,小型化努力常常面临重大挑战,尤其是在实现高光谱分辨率和精确构造方面。在此,我们介绍一种由具有WSe同质结的非线性光子忆阻器驱动的计算光谱仪。这种方法克服了传统限制,如受约束的费米能级可调性、持续暗电流以及通过钯(Pd)离子迁移驱动的动态能带调制导致的光响应维度受限等问题。钯离子迁移的关键作用得到了第一性原理计算、数值模拟和实验验证的充分支持,证明了其在提高器件性能方面的有效性。此外,我们将这种动态调制与专门为解决忆阻器固有的非线性光响应而定制的非线性神经网络相结合。这种组合使我们的光谱仪在630 - 640纳米范围内实现了0.18纳米的卓越峰值波长精度和2纳米的光谱分辨率。这一进展标志着紧凑型、高效光谱仪器制造方面的重大进步,并为跨多种材料系统的应用提供了一个通用平台。