Suppr超能文献

色氨酸生物合成可保护分枝杆菌免受 CD4+T 细胞介导的杀伤。

Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing.

机构信息

Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Cell. 2013 Dec 5;155(6):1296-308. doi: 10.1016/j.cell.2013.10.045.

Abstract

Bacteria that cause disease rely on their ability to counteract and overcome host defenses. Here, we present a genome-scale study of Mycobacterium tuberculosis (Mtb) that uncovers the bacterial determinants of surviving host immunity, sets of genes we term "counteractomes." Through this analysis, we found that CD4 T cells attempt to contain Mtb growth by starving it of tryptophan--a mechanism that successfully limits infections by Chlamydia and Leishmania, natural tryptophan auxotrophs. Mtb, however, can synthesize tryptophan under stress conditions, and thus, starvation fails as an Mtb-killing mechanism. We then identify a small-molecule inhibitor of Mtb tryptophan synthesis, which converts Mtb into a tryptophan auxotroph and restores the efficacy of a failed host defense. Together, our findings demonstrate that the Mtb immune counteractomes serve as probes of host immunity, uncovering immune-mediated stresses that can be leveraged for therapeutic discovery.

摘要

导致疾病的细菌依赖于其抵抗和克服宿主防御的能力。在这里,我们对结核分枝杆菌(Mtb)进行了全基因组研究,揭示了细菌逃避宿主免疫的决定因素,我们将这些基因称为“拮抗组”。通过这项分析,我们发现 CD4 T 细胞试图通过剥夺色氨酸来限制 Mtb 的生长——这种机制成功地限制了衣原体和利什曼原虫(天然色氨酸营养缺陷型)的感染。然而,Mtb 在应激条件下可以合成色氨酸,因此,饥饿不能作为 Mtb 杀伤机制。然后,我们鉴定出一种 Mtb 色氨酸合成的小分子抑制剂,它将 Mtb 转化为色氨酸营养缺陷型,并恢复失败的宿主防御的疗效。总之,我们的研究结果表明,Mtb 的免疫拮抗组可作为宿主免疫的探针,揭示可用于治疗发现的免疫介导的应激。

相似文献

1
Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing.
Cell. 2013 Dec 5;155(6):1296-308. doi: 10.1016/j.cell.2013.10.045.
2
Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5111-6. doi: 10.1073/pnas.1424302112. Epub 2015 Mar 27.
3
Trp'ing tuberculosis.
Cell. 2013 Dec 5;155(6):1209-10. doi: 10.1016/j.cell.2013.11.015.
7
Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against .
Front Immunol. 2019 May 28;10:1142. doi: 10.3389/fimmu.2019.01142. eCollection 2019.
8
In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of .
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):E62-E71. doi: 10.1073/pnas.1711373114. Epub 2017 Dec 18.
10
γ-herpesvirus latency attenuates Mycobacterium tuberculosis infection in mice.
Tuberculosis (Edinb). 2019 May;116:56-60. doi: 10.1016/j.tube.2019.04.022. Epub 2019 Apr 30.

引用本文的文献

2
Mycobacterium tuberculosis biology, pathogenicity and interaction with the host.
Nat Rev Microbiol. 2025 Jun 30. doi: 10.1038/s41579-025-01201-x.
5
Using host and bacterial genetic approaches to define virulence strategies and protective immunity during infection.
mSphere. 2025 May 27;10(5):e0051724. doi: 10.1128/msphere.00517-24. Epub 2025 Apr 22.
6
Chemical genetic interactions elucidate pathways controlling tuberculosis antibiotic efficacy during infection.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2417525122. doi: 10.1073/pnas.2417525122. Epub 2025 Feb 24.
7
Engineered Mycobacterium tuberculosis triple-kill-switch strain provides controlled tuberculosis infection in animal models.
Nat Microbiol. 2025 Feb;10(2):482-494. doi: 10.1038/s41564-024-01913-5. Epub 2025 Jan 10.
8
How macrophage heterogeneity affects tuberculosis disease and therapy.
Nat Rev Immunol. 2025 May;25(5):370-384. doi: 10.1038/s41577-024-01124-3. Epub 2025 Jan 7.

本文引用的文献

1
Feast or famine: the host-pathogen battle over amino acids.
Cell Microbiol. 2013 Jul;15(7):1079-87. doi: 10.1111/cmi.12140. Epub 2013 Apr 5.
2
A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium.
Nucleic Acids Res. 2013 Apr;41(8):4549-64. doi: 10.1093/nar/gkt148. Epub 2013 Mar 6.
4
Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress.
J Biol Chem. 2013 Mar 8;288(10):6788-800. doi: 10.1074/jbc.M112.445056. Epub 2013 Jan 10.
5
Global assessment of genomic regions required for growth in Mycobacterium tuberculosis.
PLoS Pathog. 2012 Sep;8(9):e1002946. doi: 10.1371/journal.ppat.1002946. Epub 2012 Sep 27.
6
ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data.
PLoS One. 2012;7(8):e43012. doi: 10.1371/journal.pone.0043012. Epub 2012 Aug 10.
7
Nutritional immunity: transition metals at the pathogen-host interface.
Nat Rev Microbiol. 2012 Jul 16;10(8):525-37. doi: 10.1038/nrmicro2836.
8
The immunological life cycle of tuberculosis.
Nat Rev Immunol. 2012 Jul 13;12(8):581-91. doi: 10.1038/nri3259.
9
Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program.
Cell Host Microbe. 2012 Jun 14;11(6):563-75. doi: 10.1016/j.chom.2012.04.012.
10
Tuberculosis and HIV co-infection.
PLoS Pathog. 2012 Feb;8(2):e1002464. doi: 10.1371/journal.ppat.1002464. Epub 2012 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验