Suppr超能文献

反复测量虚弱程度对死亡率预测很重要:来自西北阿德莱德健康研究的结果。

Recurrent Measurement of Frailty Is Important for Mortality Prediction: Findings from the North West Adelaide Health Study.

机构信息

National Health and Medical Research Council (NHMRC) Centre of Research Excellence: Frailty and Healthy Ageing, University of Adelaide, Adelaide, South Australia.

Adelaide Geriatrics Training & Research with Aged Care (G-TRAC) Centre, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia.

出版信息

J Am Geriatr Soc. 2019 Nov;67(11):2311-2317. doi: 10.1111/jgs.16066. Epub 2019 Jul 18.

Abstract

OBJECTIVES

Frailty places individuals at greater risk of adverse health outcomes. However, it is a dynamic condition and may not always lead to decline. Our objective was to determine the relationship between frailty status (at baseline and follow-up) and mortality using both the frailty phenotype (FP) and frailty index (FI).

DESIGN

Population-based cohort.

SETTING

Community-dwelling older adults.

PARTICIPANTS

A total of 909 individuals aged 65 years or older (55% female), mean age 74.4 (SD 6.2) years, had frailty measurement at baseline. Overall, 549 participants had frailty measurement at two time points.

MEASUREMENTS

Frailty was measured using the FP and FI, with a mean 4.5 years between baseline and follow-up. Mortality was matched to official death records with a minimum of 10 years of follow-up.

RESULTS

For both measures, baseline frailty was a significant predictor of mortality up to 10 years, with initially good predictive ability (area under the curve [AUC] = .8-.9) decreasing over time. Repeated measurement at follow-up resulted in good prediction compared with lower (AUC = .6-.7) discrimination of equivalent baseline frailty status. In a multivariable model, frailty measurement at follow-up was a stronger predictor of mortality compared with baseline. Frailty change for the Continuous FI was a significant predictor of decreased or increased mortality risk based on corresponding improvement or worsening of score (hazard ratio = 1.04; 95% confidence interval = 1.02-1.07; P = .001).

CONCLUSIONS

Frailty measurement is a good predictor of mortality up to 10 years; however, recency of frailty measurement is important for improved prediction. A regular review of frailty status is required in older adults. J Am Geriatr Soc 67:2311-2317, 2019.

摘要

目的

衰弱使个体面临更大的健康不良后果风险。然而,它是一种动态的状态,并不总是导致衰退。我们的目的是使用衰弱表型(FP)和衰弱指数(FI)来确定衰弱状态(基线和随访时)与死亡率之间的关系。

设计

基于人群的队列研究。

设置

居住在社区的老年人。

参与者

共有 909 名年龄在 65 岁或以上(55%为女性)、平均年龄 74.4(SD 6.2)岁的个体在基线时进行了衰弱测量。总体而言,有 549 名参与者在两个时间点进行了衰弱测量。

测量

使用 FP 和 FI 测量衰弱,基线和随访之间的平均时间为 4.5 年。通过与官方死亡记录相匹配来确定死亡率,随访时间至少为 10 年。

结果

对于这两种测量方法,基线衰弱是 10 年内死亡率的重要预测指标,最初具有良好的预测能力(曲线下面积[AUC]为.8-.9),随着时间的推移逐渐降低。在随访时进行重复测量可与基线时衰弱状态的较低(AUC =.6-.7)区分能力相比,进行更好的预测。在多变量模型中,与基线相比,随访时的衰弱测量是死亡率的更强预测指标。连续 FI 的衰弱变化是死亡率风险降低或增加的显著预测指标,这取决于相应的评分改善或恶化(风险比=1.04;95%置信区间=1.02-1.07;P=.001)。

结论

衰弱测量是 10 年内死亡率的良好预测指标;然而,衰弱测量的及时性对于改善预测很重要。需要定期审查老年人的衰弱状况。美国老年医学会 67:2311-2317,2019。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验