Liang Hua, Song Weixing
Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.
J Multivar Anal. 2009 Apr 1;100(4):726-741. doi: 10.1016/j.jmva.2008.08.003.
In this paper, we define two restricted estimators for the regression parameters in a multiple linear regression model with measurement errors when prior information for the parameters is available. We then construct two sets of improved estimators which include the preliminary test estimator, the Stein-type estimator and the positive rule Stein type estimator for both slope and intercept, and examine their statistical properties such as the asymptotic distributional quadratic biases, the asymptotic distributional quadratic risks. We remove the distribution assumption on the error term, which was generally imposed in the literature, but provide a more general investigation of comparison of the quadratic risks for these estimators. Simulation studies illustrate the finite-sample performance of the proposed estimators, which are then used to analyze a dataset from the Nurses Health Study.
在本文中,我们为具有测量误差的多元线性回归模型中的回归参数定义了两种受限估计量,前提是参数的先验信息可用。然后,我们构建了两组改进估计量,其中包括针对斜率和截距的初步检验估计量、斯坦因型估计量和正规则斯坦因型估计量,并研究了它们的统计性质,如渐近分布二次偏差、渐近分布二次风险。我们去除了文献中通常施加的误差项分布假设,但对这些估计量的二次风险比较进行了更全面的研究。模拟研究说明了所提出估计量的有限样本性能,随后将其用于分析护士健康研究中的一个数据集。