Human Health Therapeutics Research Centre, National Research Council Canada , Montreal , QC H4P 2R2 , Canada.
Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand , Québec City, QC G1V 0A6 , Canada.
MAbs. 2019 Oct;11(7):1300-1318. doi: 10.1080/19420862.2019.1632114. Epub 2019 Jul 18.
Solution stability is an important factor in the optimization of engineered biotherapeutic candidates such as monoclonal antibodies because of its possible effects on manufacturability, pharmacology, efficacy and safety. A detailed atomic understanding of the mechanisms governing self-association of natively folded protein monomers is required to devise predictive tools to guide screening and re-engineering along the drug development pipeline. We investigated pairs of affinity-matured full-size antibodies and observed drastically different propensities to aggregate from variants differing by a single amino-acid. Biophysical testing showed that antigen-binding fragments (Fabs) from the aggregating antibodies also reversibly associated with equilibrium dissociation constants in the low-micromolar range. Crystal structures (PDB accession codes 6MXR, 6MXS, 6MY4, 6MY5) and bottom-up hydrogen-exchange mass spectrometry revealed that Fab self-association occurs in a symmetric mode that involves the antigen complementarity-determining regions. Subtle local conformational changes incurred upon point mutation of monomeric variants foster formation of complementary polar interactions and hydrophobic contacts to generate a dimeric Fab interface. Testing of popular tools generally indicated low reliabilities for predicting the aggregation propensities observed. A structure-aggregation data set is provided here in order to stimulate further improvements of tools for prediction of native aggregation. Incorporation of intermolecular docking, conformational flexibility, and short-range packing interactions may all be necessary features of the ideal algorithm.
溶液稳定性是工程生物治疗候选物(如单克隆抗体)优化的一个重要因素,因为它可能对可制造性、药理学、功效和安全性产生影响。为了设计预测工具来指导筛选和沿着药物开发管道进行工程改造,需要详细了解控制天然折叠蛋白单体自组装的机制。我们研究了成对的亲和力成熟的全尺寸抗体,并观察到由单个氨基酸差异引起的变体具有截然不同的聚集倾向。生物物理测试表明,来自聚集抗体的抗原结合片段(Fab)也与平衡解离常数以低微摩尔范围可逆地相关联。晶体结构(PDB 访问代码 6MXR、6MXS、6MY4、6MY5)和从头氢交换质谱揭示了 Fab 自组装以涉及抗原互补决定区的对称模式发生。单体变体的单点突变引起的细微局部构象变化促进互补极性相互作用和疏水接触的形成,从而产生二聚体 Fab 界面。对流行工具的测试通常表明,预测观察到的聚集倾向的可靠性较低。这里提供了一个结构聚集数据集,以激发对用于预测天然聚集的工具的进一步改进。分子间对接、构象灵活性和短程堆积相互作用的结合可能都是理想算法的必要特征。