Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA.
Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
IET Syst Biol. 2019 Aug;13(4):169-179. doi: 10.1049/iet-syb.2018.5079.
Developing a model for a signalling pathway requires several iterations of experimentation and model refinement to obtain an accurate model. However, the implementation of such an approach to model a signalling pathway induced by a poorly-known stimulus can become labour intensive because only limited information on the pathway is available beforehand to formulate an initial model. Therefore, a large number of iterations are required since the initial model is likely to be erroneous. In this work, a numerical scheme is proposed to construct a time-varying model for a signalling pathway induced by a poorly-known stimulus when its nominal model is available in the literature. Here, the nominal model refers to one that describes the signalling dynamics under a well-characterised stimulus. First, global sensitivity analysis is implemented on the nominal model to identify the most important parameters, which are assumed to be piecewise constants. Second, measurement data are clustered to determine temporal subdomains where the parameters take different values. Finally, a least-squares problem is solved to estimate the parameter values in each temporal subdomain. The effectiveness of this approach is illustrated by developing a time-varying model for NF-[inline-formula removed]B signalling dynamics induced by lipopolysaccharide in the presence of brefeldin A.
开发信号通路模型需要进行多次实验和模型改进,以获得准确的模型。然而,对于由未知刺激引起的信号通路进行建模,由于事先只能获得有限的通路信息,因此这种方法的实施可能会变得非常繁琐,难以制定初始模型。因此,需要进行大量的迭代,因为初始模型很可能存在错误。在这项工作中,提出了一种数值方案,用于在文献中存在名义模型的情况下,构建由未知刺激引起的信号通路的时变模型。这里,名义模型是指在特征良好的刺激下描述信号动力学的模型。首先,对名义模型进行全局敏感性分析,以确定最重要的参数,这些参数被假定为分段常数。其次,对测量数据进行聚类,以确定参数取不同值的时间子域。最后,通过求解最小二乘问题来估计每个时间子域中的参数值。通过在存在布雷菲德菌素 A 的情况下,针对脂多糖诱导的 NF-[inline-formula removed]B 信号动力学,开发时变模型,验证了该方法的有效性。