Suppr超能文献

参数轨迹分析用于识别药物干预治疗效果。

Parameter trajectory analysis to identify treatment effects of pharmacological interventions.

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

PLoS Comput Biol. 2013;9(8):e1003166. doi: 10.1371/journal.pcbi.1003166. Epub 2013 Aug 1.

Abstract

The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological) treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT), to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR), a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1), a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1 in hepatic membranes. Next to the identification of potential unwanted side effects, we demonstrate how ADAPT can be used to design new target interventions to prevent these.

摘要

医学系统生物学领域旨在深入了解导致疾病进展的分子机制,并将这些知识转化为有效的治疗方法。一个具有挑战性的任务是研究(药物)治疗的长期效果,以确定其适用性并识别潜在的副作用。我们提出了一种新的建模方法,称为参数轨迹动态适应性分析(ADAPT),用于分析药物干预的长期效果。引入了一个模型参数随时间变化的概念,以研究分子适应性的动态。通过确定描述治疗不同阶段获得的实验数据之间转换所需的模型参数的动态变化,来预测这些适应性的进展。轨迹提供了对受影响的潜在生物学系统的深入了解,并确定了应该更详细研究的分子事件,以揭示治疗结果的机制基础。通过参数的时变描述,可以捕捉到与蛋白质组和转录组水平相互作用引起的调节效应,这些相互作用通常了解较少。ADAPT 被用于识别肝脏 X 受体(LXR)药物激活后诱导的代谢适应性,LXR 是治疗或预防动脉粥样硬化的潜在药物靶点。研究轨迹以研究适应性的级联。这提供了关于清道夫受体 B 型 1(SR-B1)功能的反直觉见解,SR-B1 是促进胆固醇在肝脏中摄取的受体。尽管 LXR 的激活促进了胆固醇外排和排泄,但我们的计算分析表明,在长期治疗后,肝脏清除胆固醇的能力降低。通过对肝细胞膜中 SR-B1 的免疫印迹测量,实验证实了这一预测。除了识别潜在的不良副作用外,我们还展示了如何使用 ADAPT 设计新的靶向干预措施来预防这些副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/3731221/ea4a4d8edf6d/pcbi.1003166.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验