School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
Chembiochem. 2020 Feb 3;21(3):417-422. doi: 10.1002/cbic.201900320. Epub 2019 Jul 18.
The rare nonproteinogenic amino acid, meta-l-tyrosine is biosynthetically intriguing. Whilst the biogenesis of tyrosine from phenylalanine is well characterised, the mechanistic basis for meta-hydroxylation is unknown. Herein, we report the analysis of 3-hydroxylase (Phe3H) from Streptomyces coeruleorubidus. Insights from kinetic analyses of the wild-type enzyme and key mutants as well as of the biocatalytic conversion of synthetic isotopically labelled substrates and fluorinated substrate analogues advance understanding of the process by which meta-hydroxylation is mediated, revealing T202 to play an important role. In the case of the WT enzyme, a deuterium label at the 3-position is lost, whereas in in the T202A mutant 75 % retention is observed, with loss of stereospecificity. These data suggest that one of two possible mechanisms is at play; direct, enzyme-catalysed deprotonation following electrophilic aromatic substitution or stereospecific loss of one proton after a 1,2-hydride shift. Furthermore, our kinetic parameters for Phe3H show efficient regiospecific generation of meta-l-tyrosine from phenylalanine and demonstrate the enzyme's ability to regiospecifically hydroxylate unnatural fluorinated substrates.
稀有非蛋白氨基酸间-甲酪氨酸的生物合成很有趣。虽然苯丙氨酸转化为酪氨酸的生物合成过程已经得到很好的描述,但间羟化的机制尚不清楚。本文报道了来自天蓝链霉菌的 3-羟化酶(Phe3H)的分析。通过对野生型酶和关键突变体的动力学分析以及对合成同位素标记的底物和氟化的底物类似物的生物催化转化,深入了解了间羟化介导的过程,揭示了 T202 发挥了重要作用。对于 WT 酶,3 位的氘标记丢失,而在 T202A 突变体中观察到 75%的保留,立体特异性丧失。这些数据表明有两种可能的机制在起作用;直接的,酶催化的亲电芳香取代后去质子化,或者 1,2-氢化物转移后立体特异性失去一个质子。此外,我们对 Phe3H 的动力学参数表明,该酶能够从苯丙氨酸中高效区域特异性地生成间-l-酪氨酸,并证明了该酶能够区域特异性地羟化非天然的氟化底物。