Suppr超能文献

非血红素铁酶的激活作用。

O Activation by Non-Heme Iron Enzymes.

作者信息

Solomon Edward I, Goudarzi Serra, Sutherlin Kyle D

机构信息

Department of Chemistry, Stanford University , Stanford, California 94305, United States.

SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.

出版信息

Biochemistry. 2016 Nov 22;55(46):6363-6374. doi: 10.1021/acs.biochem.6b00635. Epub 2016 Nov 14.

Abstract

The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods that provide significant insight into the correlation of structure with function have now been developed. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe-OOH non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe═O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Finally, for several subclasses of non-heme Fe enzymes, binding of the substrate to the Fe site leads to the one-electron reductive activation of O to an Fe-superoxide capable of H atom abstraction and electrophilic attack.

摘要

非血红素铁酶在自然界中广泛存在,执行着涉及氧活化的多种功能。相对于血红素酶而言,这些酶一直难以研究;然而,目前已经开发出了能深入了解结构与功能相关性的光谱方法。这篇《当前话题》文章总结了这些酶在共底物存在下控制氧活化所采用的分子机制,以及这些反应生成的氧中间体。观察到三种类型的氧活化。首先,非血红素反应性被证明不同于血红素化学,在血红素化学中,低自旋铁-过氧羟基非血红素中间体直接与底物反应。此外,非血红素铁酶的两个亚类会生成高自旋铁═氧中间体,这些中间体提供了既能控制选择性的σ前沿分子轨道,也能控制选择性的π前沿分子轨道。最后,对于非血红素铁酶的几个亚类,底物与铁位点的结合会导致氧单电子还原活化为能够夺取氢原子和亲电攻击的铁超氧化物。

相似文献

1
O Activation by Non-Heme Iron Enzymes.
Biochemistry. 2016 Nov 22;55(46):6363-6374. doi: 10.1021/acs.biochem.6b00635. Epub 2016 Nov 14.
2
Geometric and electronic structure contributions to function in non-heme iron enzymes.
Acc Chem Res. 2013 Nov 19;46(11):2725-39. doi: 10.1021/ar400149m. Epub 2013 Sep 26.
5
Peroxo and oxo intermediates in mononuclear nonheme iron enzymes and related active sites.
Curr Opin Chem Biol. 2009 Feb;13(1):99-113. doi: 10.1016/j.cbpa.2009.02.011. Epub 2009 Mar 9.
6
Finding intermediates in the O2 activation pathways of non-heme iron oxygenases.
Acc Chem Res. 2007 Jul;40(7):475-83. doi: 10.1021/ar700052v. Epub 2007 Jun 14.
9
Structure/function correlations over binuclear non-heme iron active sites.
J Biol Inorg Chem. 2016 Sep;21(5-6):575-88. doi: 10.1007/s00775-016-1372-9. Epub 2016 Jul 1.

引用本文的文献

1
Revealing the Catalytic Strategy of FTO.
Chem Catal. 2023 Sep 21;3(9). doi: 10.1016/j.checat.2023.100732. Epub 2023 Aug 28.
2
BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms.
Eng Microbiol. 2025 Jan 1;5(1):100188. doi: 10.1016/j.engmic.2024.100188. eCollection 2025 Mar.
6
Elucidating the Role of O Uncoupling for the Adaptation of Bacterial Biodegradation Reactions Catalyzed by Rieske Oxygenases.
ACS Environ Au. 2024 May 14;4(4):204-218. doi: 10.1021/acsenvironau.4c00016. eCollection 2024 Jul 17.
8
The Unique Role of the Second Coordination Sphere to Unlock and Control Catalysis in Nonheme Fe(II)/2-Oxoglutarate Histone Demethylase KDM2A.
Inorg Chem. 2024 Jun 10;63(23):10737-10755. doi: 10.1021/acs.inorgchem.4c01365. Epub 2024 May 23.
9
Spectroscopic, electrochemical, and kinetic trends in Fe(III)-thiolate disproportionation near physiologic pH.
J Biol Inorg Chem. 2024 Apr;29(3):291-301. doi: 10.1007/s00775-024-02051-3. Epub 2024 May 9.
10
Controlling product selectivity during dioxygen reduction with Mn complexes using pendent proton donor relays and added base.
Chem Sci. 2024 Feb 13;15(12):4478-4488. doi: 10.1039/d3sc02611f. eCollection 2024 Mar 20.

本文引用的文献

1
Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase.
J Am Chem Soc. 2016 Jul 20;138(28):8862-74. doi: 10.1021/jacs.6b04065. Epub 2016 Jul 5.
3
Mechanism of O2 Activation by α-Ketoglutarate Dependent Oxygenases Revisited. A Quantum Chemical Study.
J Phys Chem A. 2016 Mar 3;120(8):1261-74. doi: 10.1021/acs.jpca.5b12311. Epub 2016 Feb 23.
5
Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase.
Biochemistry. 2015 Aug 4;54(30):4652-64. doi: 10.1021/acs.biochem.5b00573. Epub 2015 Jul 21.
6
Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers.
Coord Chem Rev. 2013 Jan 15;257(2):541-563. doi: 10.1016/j.ccr.2012.04.028.
7
Studies on deacetoxycephalosporin C synthase support a consensus mechanism for 2-oxoglutarate dependent oxygenases.
Biochemistry. 2014 Apr 22;53(15):2483-93. doi: 10.1021/bi500086p. Epub 2014 Apr 11.
8
Geometric and electronic structure contributions to function in non-heme iron enzymes.
Acc Chem Res. 2013 Nov 19;46(11):2725-39. doi: 10.1021/ar400149m. Epub 2013 Sep 26.
9
Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2.
Nature. 2013 Jul 18;499(7458):320-3. doi: 10.1038/nature12304.
10
Spectroscopic studies of the mononuclear non-heme Fe(II) enzyme FIH: second-sphere contributions to reactivity.
J Am Chem Soc. 2013 Jul 3;135(26):9665-74. doi: 10.1021/ja312571m. Epub 2013 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验