Department of Public Health, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia.
Research Centre for Generational Health and Ageing, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia.
PLoS One. 2019 Jul 18;14(7):e0219860. doi: 10.1371/journal.pone.0219860. eCollection 2019.
Geospatial data are important in monitoring many aspects of healthcare development. Geographically linking health facility data with population data is an important area of public health research. Examining healthcare problems spatially and hierarchically assists with efficient resource allocation and the monitoring and evaluation of service efficacy at different levels. This paper explored methodological issues associated with geographic data linkage, and the spatial and multilevel analyses that could be considered in analysing maternal health service data.
The 2016 Ethiopia Demographic and Health Survey and the 2014 Ethiopia Service Provision Assessment data were used. Two geographic data linking methods were used to link these two datasets. Administrative boundary link was used to link a sample of health facilities data with population survey data for analysing three areas of maternal health service use. Euclidean buffer link was used for a census of hospitals to analyse caesarean delivery use in Ethiopia. The Global Moran's I and the Getis-Ord Gi* statistics need to be carried out for identifying hot spots of maternal health service use in ArcGIS software. In addition to this, since the two datasets contain hierarchical data, a multilevel analysis was carried out to identify key determinants of maternal health service use in Ethiopia.
Administrative boundary link gave more types of health facilities and more maternal health services as compared to the Euclidean buffer link. Administrative boundary link is the method of choice in case of sampled health facilities. However, for a census of health facilities, the Euclidean buffer link is the appropriate choice as this provides cluster level service environment estimates, which the administrative boundary link does not. Applying a False Discovery Rate correction enables the identification of true spatial clusters of maternal health service use.
A service environment link minimizes the methodological issues associated with geographic data linkage. A False Discovery Rate correction needs to be used to account for multiple and dependent testing while carrying out local spatial statistics. Examining maternal health service use both spatially and hierarchically has tremendous importance for identifying geographic areas that need special emphasis and for intervention purposes.
地理空间数据在监测医疗保健发展的许多方面都很重要。将卫生机构数据与人口数据进行地理链接是公共卫生研究的一个重要领域。从空间和层次上检查医疗保健问题有助于在不同层面上进行高效资源分配以及对服务效果的监测和评估。本文探讨了与地理数据链接相关的方法学问题,以及在分析产妇保健服务数据时可以考虑的空间和多层次分析。
使用了 2016 年埃塞俄比亚人口与健康调查和 2014 年埃塞俄比亚服务提供评估数据。使用了两种地理数据链接方法将这两个数据集进行链接。行政边界链接用于将卫生机构数据的样本与人口调查数据进行链接,以分析产妇保健服务使用的三个方面。欧几里得缓冲区链接用于对医院进行普查,以分析埃塞俄比亚的剖宫产使用情况。需要在 ArcGIS 软件中进行全局 Moran's I 和 Getis-Ord Gi*统计分析,以识别产妇保健服务使用的热点。此外,由于这两个数据集包含层次数据,因此进行了多层次分析,以确定埃塞俄比亚产妇保健服务使用的关键决定因素。
与欧几里得缓冲区链接相比,行政边界链接提供了更多类型的卫生机构和更多的产妇保健服务。在涉及抽样卫生机构的情况下,行政边界链接是首选方法。但是,对于卫生机构的普查,欧几里得缓冲区链接是合适的选择,因为它提供了集群层面的服务环境估计,而行政边界链接则没有。应用错误发现率校正可以识别产妇保健服务使用的真实空间聚类。
服务环境链接最大限度地减少了与地理数据链接相关的方法学问题。在进行局部空间统计时,需要使用错误发现率校正来考虑多重和依赖测试。从空间和层次上检查产妇保健服务使用情况对于确定需要特别关注和干预的地理区域具有重要意义。