Suppr超能文献

评估脂质过氧化和人工神经网络模型在早期阿尔茨海默病诊断中的应用。

Assessment of lipid peroxidation and artificial neural network models in early Alzheimer Disease diagnosis.

机构信息

Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain.

Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France.

出版信息

Clin Biochem. 2019 Oct;72:64-70. doi: 10.1016/j.clinbiochem.2019.07.008. Epub 2019 Jul 15.

Abstract

OBJECTIVE

Lipid peroxidation constitutes a molecular mechanism involved in early Alzheimer Disease (AD) stages, and artificial neural network (ANN) analysis is a promising non-linear regression model, characterized by its high flexibility and utility in clinical diagnosis. ANN simulates neuron learning procedures and it could provide good diagnostic performances in this complex and heterogeneous disease compared with linear regression analysis.

DESIGN AND METHODS

In our study, a new set of lipid peroxidation compounds were determined in urine and plasma samples from patients diagnosed with early Alzheimer Disease (n = 70) and healthy controls (n = 26) by means of ultra-performance liquid chromatography coupled with tandem mass-spectrometry. Then, a model based on ANN was developed to classify groups of participants.

RESULTS

The diagnostic performances obtained using an ANN model for each biological matrix were compared with the corresponding linear regression model based on partial least squares (PLS), and with the non-linear (radial and polynomial) support vector machine (SVM) models. Better accuracy, in terms of receiver operating characteristic-area under curve (ROC-AUC), was obtained for the ANN models (ROC-AUC 0.882 in plasma and 0.839 in urine) than for PLS and SVM models.

CONCLUSION

Lipid peroxidation and ANN constitute a useful approach to establish a reliable diagnosis when the prognosis is complex, multidimensional and non-linear.

摘要

目的

脂质过氧化是阿尔茨海默病(AD)早期阶段的一个分子机制,人工神经网络(ANN)分析是一种很有前途的非线性回归模型,其特点是灵活性高,在临床诊断中具有实用性。ANN 模拟神经元学习过程,与线性回归分析相比,它可以为这种复杂且异质的疾病提供良好的诊断性能。

设计与方法

在我们的研究中,通过超高效液相色谱-串联质谱法,在诊断为早期阿尔茨海默病的患者(n=70)和健康对照组(n=26)的尿液和血浆样本中测定了一组新的脂质过氧化化合物。然后,建立了一个基于 ANN 的模型来对参与者进行分类。

结果

使用 ANN 模型对每种生物基质进行的诊断性能与基于偏最小二乘法(PLS)的相应线性回归模型以及非线性(径向和多项式)支持向量机(SVM)模型进行了比较。与 PLS 和 SVM 模型相比,ANN 模型(血浆的 ROC-AUC 为 0.882,尿液为 0.839)的准确性更高,ROC-AUC 更好。

结论

脂质过氧化和 ANN 为建立可靠的诊断方法提供了一种有用的方法,当预后复杂、多维且非线性时,该方法非常有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验