College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
BMC Plant Biol. 2019 Jul 18;19(1):323. doi: 10.1186/s12870-019-1929-1.
Exogenous 5-aminolevulinic acid (ALA) positively regulates plants chlorophyll synthesis and protects them against environmental stresses, although the protection mechanism is not fully clear. Here, we explored the effects of ALA on chlorophyll synthesis in tomato plants, which are sensitive to low temperature. We also examined the roles of the glutathione S-transferase (GSTU43) gene, which is involved in ALA-induced tolerance to oxidation stress and regulation of chlorophyll synthesis under low temperature.
Exogenous ALA alleviated low temperature caused chlorophyll synthesis obstacle of uroporphyrinogen III (UROIII) conversion to protoporphyrin IX (Proto IX), and enhanced the production of chlorophyll and its precursors, including endogenous ALA, Proto IX, Mg-protoporphyrin IX (Mg-proto IX), and protochlorophyll (Pchl), under low temperature in tomato leaves. However, ALA did not regulate chlorophyll synthesis at the level of transcription. Notably, ALA up-regulated the GSTU43 gene and protein expression and increased GST activity. Silencing of GSTU43 with virus-induced gene silencing reduced the activities of GST, superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and increased the membrane lipid peroxidation; while fed with ALA significant increased all these antioxidase activities and antioxidant contents, and alleviated the membrane damage.
ALA triggered GST activity encoded by GSTU43, and increased tomato tolerance to low temperature-induced oxidative stress, perhaps with the assistance of ascorbate- and/or a glutathione-regenerating cycles, and actively regulated the plant redox homeostasis. This latter effect reduced the degree of membrane lipid peroxidation, which was essential for the coordinated synthesis of chlorophyll.
外源性 5-氨基酮戊酸(ALA)正向调节植物叶绿素的合成,并保护其免受环境胁迫,但保护机制尚不完全清楚。在这里,我们研究了 ALA 对番茄植物叶绿素合成的影响,番茄植物对低温敏感。我们还研究了谷胱甘肽 S-转移酶(GSTU43)基因的作用,该基因参与 ALA 诱导的氧化应激耐受和低温下叶绿素合成的调节。
外源 ALA 缓解了低温对尿卟啉原 III(UROIII)转化为原卟啉 IX(Proto IX)造成的叶绿素合成障碍,并增强了叶绿素及其前体(包括内源性 ALA、Proto IX、Mg-原卟啉 IX(Mg-proto IX)和原叶绿素(Pchl))在番茄叶片中的产量。然而,ALA 并没有在转录水平上调节叶绿素合成。值得注意的是,ALA 上调了 GSTU43 基因和蛋白表达,并增加了 GST 活性。利用病毒诱导的基因沉默沉默 GSTU43 降低了 GST、超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶和谷胱甘肽还原酶的活性,增加了膜脂过氧化;而喂食 ALA 则显著增加了所有这些抗氧化酶的活性和抗氧化剂含量,并缓解了膜损伤。
ALA 触发了由 GSTU43 编码的 GST 活性,并提高了番茄对低温诱导的氧化应激的耐受性,这可能是通过抗坏血酸和/或谷胱甘肽再生循环的协助,并积极调节植物的氧化还原稳态。这种后者的作用降低了膜脂过氧化的程度,这对叶绿素的协调合成是必不可少的。