Suppr超能文献

mRNA 中核糖体蛋白 S1 依赖的备用位点由单链区域和 5' 结构元件组成。

The ribosomal protein S1-dependent standby site in mRNA consists of a single-stranded region and a 5' structure element.

机构信息

Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, S-75124 Uppsala, Sweden.

Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15901-15906. doi: 10.1073/pnas.1904309116. Epub 2019 Jul 18.

Abstract

In bacteria, stable RNA structures that sequester ribosome-binding sites (RBS) impair translation initiation, and thus protein output. In some cases, ribosome standby can overcome inhibition by structure: 30S subunits bind sequence-nonspecifically to a single-stranded region and, on breathing of the inhibitory structure, relocate to the RBS for initiation. Standby can occur over long distances, as in the active, +42 mRNA, encoding a toxin. This mRNA is translationally silenced by an antitoxin sRNA, IstR-1, that base pairs to the standby site. In and other cases, a direct interaction between 30S subunits and a standby site has remained elusive. Based on fluorescence anisotropy experiments, ribosome toeprinting results, in vitro translation assays, and cross-linking-immunoprecipitation (CLIP) in vitro, carried out on standby-proficient and standby-deficient mRNAs, we provide a thorough characterization of the standby site. 30S subunits and ribosomal protein S1 alone display high-affinity binding to standby-competent fluorescein-labeled +42 mRNA, but not to mRNAs that lack functional standby sites. Ribosomal protein S1 is essential for standby, as 30∆S1 subunits do not support standby-dependent toeprints and TisB translation in vitro. S1 alone- and 30S-CLIP followed by RNA-seq mapping shows that the functional standby site consists of the expected single-stranded region, but surprisingly, also a 5'-end stem-loop structure. Removal of the latter by 5'-truncations, or disruption of the stem, abolishes 30S binding and standby activity. Based on the CLIP-read mapping, the long-distance standby effect in +42 mRNA (∼100 nt) is tentatively explained by S1-dependent directional unfolding toward the downstream RBS.

摘要

在细菌中,稳定的 RNA 结构会隔离核糖体结合位点 (RBS),从而抑制翻译起始,进而影响蛋白质的产生。在某些情况下,核糖体备用可以克服结构的抑制:30S 亚基非特异性地结合到单链区域,当抑制结构呼吸时,重新定位到 RBS 以启动翻译。备用可以发生在很长的距离上,例如在编码毒素的活性 +42 mRNA 中。这种 mRNA 被反毒素 sRNA IstR-1 沉默,该 sRNA 与备用位点配对。在 和其他情况下,30S 亚基与备用位点之间的直接相互作用仍然难以捉摸。基于荧光各向异性实验、核糖体 toe 印迹结果、体外翻译测定以及备用能力和备用缺陷的 mRNA 体外交联免疫沉淀 (CLIP),我们对 备用位点进行了全面的表征。30S 亚基和核糖体蛋白 S1 单独对备用能力荧光素标记的 +42 mRNA 显示出高亲和力结合,但对缺乏功能性备用位点的 mRNA 则没有。核糖体蛋白 S1 对备用至关重要,因为 30∆S1 亚基不能支持体外备用依赖的 toe 印迹和 TisB 翻译。S1 单独和 30S-CLIP 后进行 RNA-seq 图谱显示,功能性 备用位点由预期的单链区域组成,但令人惊讶的是,还包括 5' 端茎环结构。通过 5' 截断或破坏茎环结构,可消除 30S 结合和备用活性。基于 CLIP 读取图谱,+42 mRNA 中长距离备用效应(约 100nt)推测是通过 S1 依赖性的向下游 RBS 定向展开实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eaf/6690012/3fb0ceadc31a/pnas.1904309116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验