Suppr超能文献

蛋白质S1可抵消延伸的夏因-达尔加诺序列对翻译的抑制作用。

Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation.

作者信息

Komarova Anastassia V, Tchufistova Ludmila S, Supina Elena V, Boni Irina V

机构信息

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.

出版信息

RNA. 2002 Sep;8(9):1137-47. doi: 10.1017/s1355838202029990.

Abstract

There are two major components of Escherichia coli ribosomes directly involved in selection and binding of mRNA during initiation of protein synthesis-the highly conserved 3' end of 16S rRNA (aSD) complementary to the Shine-Dalgarno (SD) domain of mRNA, and the ribosomal protein S1. A contribution of the SD-aSD and S1-mRNA interactions to translation yield in vivo has been evaluated in a genetic system developed to compare efficiencies of various ribosome-binding sites (RBS) in driving beta-galactosidase synthesis from the single-copy (chromosomal) lacZ gene. The in vivo experiments have been supplemented by in vitro toeprinting and gel-mobility shift assays. A shortening of a potential SD-aSD duplex from 10 to 8 and to 6 bp increased the beta-galactosidase yield (four- and sixfold, respectively) suggesting that an extended SD-aSD duplex adversely affects translation, most likely due to its redundant stability causing ribosome stalling at the initiation step. Translation yields were significantly increased upon insertion of the A/U-rich S1 binding targets upstream of the SD region, but the longest SD remained relatively less efficient. In contrast to complete 30S ribosomes, the S1-depleted 30S particles have been able to form an extended SD-aSD duplex, but not the true ternary initiation complex. Taken together, the in vivo and in vitro data allow us to conclude that S1 plays two roles in translation initiation: It forms an essential part of the mRNA-binding track even when mRNA bears a long SD sequence, and through the binding to the 5' untranslated region, it can ensure a substantial enhancing effect on translation.

摘要

在蛋白质合成起始过程中,大肠杆菌核糖体有两个主要成分直接参与mRNA的选择和结合,即与mRNA的Shine-Dalgarno(SD)结构域互补的16S rRNA高度保守的3'端(aSD)和核糖体蛋白S1。在一个用于比较各种核糖体结合位点(RBS)驱动单拷贝(染色体)lacZ基因合成β-半乳糖苷酶效率的遗传系统中,评估了SD-aSD和S1-mRNA相互作用对体内翻译产量的贡献。体内实验通过体外足迹法和凝胶迁移率变动分析进行了补充。将潜在的SD-aSD双链从10 bp缩短至8 bp和6 bp可提高β-半乳糖苷酶产量(分别提高四倍和六倍),这表明延长的SD-aSD双链对翻译产生不利影响,最可能的原因是其多余的稳定性导致核糖体在起始步骤停滞。在SD区域上游插入富含A/U的S1结合靶点后,翻译产量显著增加,但最长的SD仍然相对低效。与完整的30S核糖体不同,去除S1的30S颗粒能够形成延长的SD-aSD双链,但不能形成真正的三元起始复合物。综合体内和体外数据,我们可以得出结论,S1在翻译起始中起两个作用:即使mRNA带有长SD序列,它也是mRNA结合轨道的重要组成部分,并且通过与5'非翻译区结合,它可以确保对翻译有显著的增强作用。

相似文献

2
AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli.
J Bacteriol. 2005 Feb;187(4):1344-9. doi: 10.1128/JB.187.4.1344-1349.2005.
4
Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer.
Mol Microbiol. 2020 Sep;114(3):391-408. doi: 10.1111/mmi.14514. Epub 2020 May 2.
8
Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
Cell. 2007 Sep 21;130(6):1019-31. doi: 10.1016/j.cell.2007.07.008.
9
Anatomy of Escherichia coli ribosome binding sites.
J Mol Biol. 2001 Oct 12;313(1):215-28. doi: 10.1006/jmbi.2001.5040.
10
Translation initiation in Escherichia coli: sequences within the ribosome-binding site.
Mol Microbiol. 1992 May;6(9):1219-29. doi: 10.1111/j.1365-2958.1992.tb01561.x.

引用本文的文献

1
Autonomous ribosome biogenesis in vitro.
Nat Commun. 2025 Jan 8;16(1):514. doi: 10.1038/s41467-025-55853-7.
2
Cooperation of regulatory RNA and the RNA degradosome in transcript surveillance.
Nucleic Acids Res. 2024 Aug 27;52(15):9161-9173. doi: 10.1093/nar/gkae455.
3
Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023.
Int J Mol Sci. 2024 Mar 3;25(5):2957. doi: 10.3390/ijms25052957.
4
5'UTR sequences influence protein levels in by regulating translation initiation and mRNA stability.
Front Microbiol. 2022 Dec 21;13:1088941. doi: 10.3389/fmicb.2022.1088941. eCollection 2022.
5
Minigene as a Novel Regulatory Element in Toxin-Antitoxin Systems.
Int J Mol Sci. 2021 Dec 13;22(24):13389. doi: 10.3390/ijms222413389.
6
Translation initiation from sequence variants of the bacteriophage T7 g10RBS in Escherichia coli and Agrobacterium fabrum.
Mol Biol Rep. 2022 Jan;49(1):833-838. doi: 10.1007/s11033-021-06891-z. Epub 2021 Nov 7.
7
Regulation of Ribosomal Protein Synthesis in Mycobacteria: The Autogenous Control of .
Int J Mol Sci. 2021 Sep 7;22(18):9679. doi: 10.3390/ijms22189679.
8
Improved Dynamic Range of a Rhamnose-Inducible Promoter for Gene Expression in spp.
Appl Environ Microbiol. 2021 Aug 26;87(18):e0064721. doi: 10.1128/AEM.00647-21.
9
Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises.
Front Microbiol. 2021 Jan 21;11:624830. doi: 10.3389/fmicb.2020.624830. eCollection 2020.
10
The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation.
RNA Biol. 2021 Nov;18(11):1489-1500. doi: 10.1080/15476286.2020.1861406. Epub 2020 Dec 21.

本文引用的文献

1
Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA.
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):11991-6. doi: 10.1073/pnas.211266898. Epub 2001 Oct 2.
2
Non-canonical mechanism for translational control in bacteria: synthesis of ribosomal protein S1.
EMBO J. 2001 Aug 1;20(15):4222-32. doi: 10.1093/emboj/20.15.4222.
3
Evidence against an Interaction between the mRNA downstream box and 16S rRNA in translation initiation.
J Bacteriol. 2001 Jun;183(11):3499-505. doi: 10.1128/JB.183.11.3499-3505.2001.
6
Epsilon as an initiator of translation of CAT mRNA in Escherichia coli.
Biochem Biophys Res Commun. 2000 Jul 5;273(2):528-31. doi: 10.1006/bbrc.2000.2958.
9
Translational enhancement by an element downstream of the initiation codon in Escherichia coli.
J Biol Chem. 1999 Apr 9;274(15):10079-85. doi: 10.1074/jbc.274.15.10079.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验