Stanfill Bryan, Reehl Sarah, Bramer Lisa, Nakayasu Ernesto S, Rich Stephen S, Metz Thomas O, Rewers Marian, Webb-Robertson Bobbie-Jo
Computing and Analytics Division, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
Biomed Eng Comput Biol. 2019 Jul 15;10:1179597219858954. doi: 10.1177/1179597219858954. eCollection 2019.
Classification is a common technique applied to 'omics data to build predictive models and identify potential markers of biomedical outcomes. Despite the prevalence of case-control studies, the number of classification methods available to analyze data generated by such studies is extremely limited. Conditional logistic regression is the most commonly used technique, but the associated modeling assumptions limit its ability to identify a large class of sufficiently complicated 'omic signatures. We propose a data preprocessing step which generalizes and makes any linear or nonlinear classification algorithm, even those typically not appropriate for matched design data, available to be used to model case-control data and identify relevant biomarkers in these study designs. We demonstrate on simulated case-control data that both the classification and variable selection accuracy of each method is improved after applying this processing step and that the proposed methods are comparable to or outperform existing variable selection methods. Finally, we demonstrate the impact of conditional classification algorithms on a large cohort study of children with islet autoimmunity.
分类是应用于“组学”数据以构建预测模型并识别生物医学结果潜在标志物的常用技术。尽管病例对照研究很普遍,但可用于分析此类研究产生的数据的分类方法数量极其有限。条件逻辑回归是最常用的技术,但其相关的建模假设限制了它识别一大类足够复杂的“组学”特征的能力。我们提出了一个数据预处理步骤,该步骤进行了推广,使任何线性或非线性分类算法,即使是那些通常不适用于匹配设计数据的算法,都可用于对病例对照数据进行建模并识别这些研究设计中的相关生物标志物。我们在模拟的病例对照数据上证明,应用此处理步骤后,每种方法的分类和变量选择准确性都得到了提高,并且所提出的方法与现有变量选择方法相当或更胜一筹。最后,我们展示了条件分类算法对一项关于胰岛自身免疫儿童的大型队列研究的影响。