Suppr超能文献

使用原子力显微镜-扫描电化学显微镜对锂硫电池界面进行原位电化学成像

In Situ Electrochemical Mapping of Lithium-Sulfur Battery Interfaces Using AFM-SECM.

作者信息

Mahankali Kiran, Thangavel Naresh Kumar, Reddy Arava Leela Mohana

机构信息

Department of Mechanical Engineering , Wayne State University , 5050 Anthony Wayne Drive , Detroit , Michigan 48202 , United States.

出版信息

Nano Lett. 2019 Aug 14;19(8):5229-5236. doi: 10.1021/acs.nanolett.9b01636. Epub 2019 Jul 29.

Abstract

Although lithium-sulfur (Li-S) batteries are explored extensively, several features of the lithium polysulfides (LiPS) redox mechanism at the electrode/electrolyte interface still remain unclear. Though various in situ and ex situ characterization techniques have been deployed in recent years, many spatial aspects related to the local electrochemical phenomena of the Li-S electrode are not elucidated. Herein, we introduce the atomic-force-microscopy-based scanning electrochemical microscopy (AFM-SECM) technique to study the Li-S interfacial redox reactions at nanoscale spatial resolution in real time. In situ electrochemical and alternating current (AC) phase mappings of LiS particle during oxidation directly distinguished the presence of both conducting and insulating regions within itself. During charging, the conducting part undergoes dissolution, whereas the insulating part, predominantly LiS, chemically/electrochemically reacts with intermediate LiPS. At higher oxidation potentials, as-reacted LiPS turns into insulating products, which accumulate over cycling, resulting in reduction of active material utilization and ultimately leading to capacity fade. The interdependence of the topography and electrochemical oxidative behavior of LiS on the carbon surface by AFM-SECM reveals the LiS morphology-activity relationship and provides new insights into the capacity fading mechanism in Li-S batteries.

摘要

尽管锂硫(Li-S)电池已得到广泛研究,但电极/电解质界面处多硫化锂(LiPS)氧化还原机制的几个特征仍不清楚。尽管近年来已采用各种原位和非原位表征技术,但许多与Li-S电极局部电化学现象相关的空间方面仍未得到阐明。在此,我们引入基于原子力显微镜的扫描电化学显微镜(AFM-SECM)技术,以实时研究纳米级空间分辨率下的Li-S界面氧化还原反应。LiS颗粒在氧化过程中的原位电化学和交流(AC)相映射直接区分了其内部导电区域和绝缘区域的存在。在充电过程中,导电部分发生溶解,而绝缘部分(主要是LiS)与中间LiPS发生化学/电化学反应。在较高氧化电位下,反应后的LiPS转变为绝缘产物,这些产物在循环过程中积累,导致活性材料利用率降低,最终导致容量衰减。通过AFM-SECM揭示的LiS在碳表面的形貌与电化学氧化行为之间的相互依存关系,揭示了LiS的形貌-活性关系,并为Li-S电池的容量衰减机制提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验