文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

不同磁体位置对动脉分叉处粒子靶向的血液动力效应。

Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions.

机构信息

Centre for Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Branch, Mihai Viteazul Str. 24, RO-300223 Timisoara, Romania.

Faculty of Physics, West University of Timisoara, Vasile Parvan Str. 1, RO-300222 Timisoara, Romania.

出版信息

Molecules. 2019 Jul 9;24(13):2509. doi: 10.3390/molecules24132509.


DOI:10.3390/molecules24132509
PMID:31324029
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6650837/
Abstract

The present study investigated the possibilities and feasibility of drug targeting for an arterial bifurcation lesion to influence the host healing response. A micrometer sized iron particle was used only to model the magnetic carrier in the experimental investigation (not intended for clinical use), to demonstrate the feasibility of the particle targeting at the lesion site and facilitate the new experimental investigations using coated superparamagnetic iron oxide nanoparticles. Magnetic fields were generated by a single permanent external magnet (ferrite magnet). Artery bifurcation exerts severe impacts on drug distribution, both in the main vessel and the branches, practically inducing an uneven drug concentration distribution in the bifurcation lesion area. There are permanently positioned magnets in the vicinity of the bifurcation near the diseased area. The generated magnetic field induced deviation of the injected ferromagnetic particles and were captured onto the vessel wall of the test section. To increase the particle accumulation in the targeted region and consequently avoid the polypharmacology (interaction of the injected drug particles with multiple target sites), it is critical to understand flow hemodynamics and the correlation between flow structure, magnetic field gradient, and spatial position.

摘要

本研究探讨了药物靶向治疗动脉分叉病变以影响宿主愈合反应的可能性和可行性。使用微米级的铁颗粒仅模拟实验研究中的磁性载体(不适用于临床用途),以证明颗粒在病变部位靶向的可行性,并促进使用涂层超顺磁氧化铁纳米颗粒的新实验研究。磁场由单个外部永磁体(铁氧体磁铁)产生。动脉分叉对药物分布有严重影响,无论是在主血管还是分支中,实际上都会导致分叉病变区域的药物浓度分布不均匀。在病变区域附近的分叉处附近有永久性定位磁铁。产生的磁场会导致注入的铁磁颗粒发生偏差,并被捕获到测试段的血管壁上。为了增加目标区域的颗粒积累,从而避免多药理学(注入药物颗粒与多个目标部位的相互作用),了解流体力学生和流结构、磁场梯度和空间位置之间的相关性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/d71aa470ba2f/molecules-24-02509-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/3a43b9556541/molecules-24-02509-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/4cf0eac7d9dc/molecules-24-02509-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/ee8a57472d1d/molecules-24-02509-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/237196e88625/molecules-24-02509-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/91c1588adf41/molecules-24-02509-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/f18c19474b01/molecules-24-02509-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/2dd8bac6c62c/molecules-24-02509-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/16c5f86b46db/molecules-24-02509-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/c665390b0eb8/molecules-24-02509-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/e43d11ec3bc8/molecules-24-02509-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/d7eba56cdc9c/molecules-24-02509-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/18e52cf701d4/molecules-24-02509-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/bc7142fc3f43/molecules-24-02509-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/7bc451698f8e/molecules-24-02509-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/e933988854f0/molecules-24-02509-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/d71aa470ba2f/molecules-24-02509-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/3a43b9556541/molecules-24-02509-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/4cf0eac7d9dc/molecules-24-02509-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/ee8a57472d1d/molecules-24-02509-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/237196e88625/molecules-24-02509-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/91c1588adf41/molecules-24-02509-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/f18c19474b01/molecules-24-02509-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/2dd8bac6c62c/molecules-24-02509-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/16c5f86b46db/molecules-24-02509-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/c665390b0eb8/molecules-24-02509-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/e43d11ec3bc8/molecules-24-02509-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/d7eba56cdc9c/molecules-24-02509-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/18e52cf701d4/molecules-24-02509-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/bc7142fc3f43/molecules-24-02509-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/7bc451698f8e/molecules-24-02509-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/e933988854f0/molecules-24-02509-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b98/6650837/d71aa470ba2f/molecules-24-02509-g016.jpg

相似文献

[1]
Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions.

Molecules. 2019-7-9

[2]
Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery.

Cardiovasc Eng Technol. 2023-10

[3]
Development of a Two-Way Coupled Eulerian-Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery.

Cardiovasc Eng Technol. 2019-6

[4]
Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy.

Drug Deliv. 2018-11

[5]
Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation.

Comput Methods Programs Biomed. 2022-6

[6]
Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".

Cardiovasc Eng Technol. 2018-3

[7]
Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model.

Int J Mol Sci. 2023-1-29

[8]
A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.

IEEE Trans Biomed Eng. 2015-1

[9]
Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays.

Phys Med Biol. 2017-3-21

[10]
Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.

Comput Methods Programs Biomed. 2017-4

引用本文的文献

[1]
Field-Induced Agglomerations of Polyethylene-Glycol-Functionalized Nanoclusters: Rheological Behaviour and Optical Microscopy.

Pharmaceutics. 2023-11-10

[2]
Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications.

Micromachines (Basel). 2022-10-25

[3]
Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens.

Micromachines (Basel). 2022-10-19

[4]
Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting.

Pharmaceutics. 2022-9-12

[5]
Patient-Specific Image-Based Computational Fluid Dynamics Analysis of Abdominal Aorta and Branches.

J Pers Med. 2022-9-14

本文引用的文献

[1]
From design to the clinic: practical guidelines for translating cardiovascular nanomedicine.

Cardiovasc Res. 2018-11-1

[2]
Determination of hemodynamic risk for vascular disease in planar artery bifurcations.

Sci Rep. 2018-2-12

[3]
Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications.

Molecules. 2017-8-31

[4]
Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation.

BMC Neurosci. 2017-6-26

[5]
SCAI appropriate use criteria for peripheral arterial interventions: An update.

Catheter Cardiovasc Interv. 2017-10-1

[6]
The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases.

Expert Opin Drug Deliv. 2017-4-13

[7]
Strategies to Approaching Lower Limb Occlusions.

Tech Vasc Interv Radiol. 2016-6

[8]
Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids.

Molecules. 2015-9-30

[9]
Cell Magnetic Targeting System for Repair of Severe Chronic Osteochondral Defect in a Rabbit Model.

Cell Transplant. 2016

[10]
Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

Regen Med. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索