Suppr超能文献

用于物联网中云粒计算的单板计算机集群

Single-Board-Computer Clusters for Cloudlet Computing in Internet of Things.

作者信息

Fernández-Cerero Damián, Fernández-Rodríguez Jorge Yago, Álvarez-García Juan A, Soria-Morillo Luis M, Fernández-Montes Alejandro

机构信息

Department of Computer Languages and Systems, University of Seville, 41012 Seville, Spain.

School of Computing, Dublin City University, Dublin 9, Ireland.

出版信息

Sensors (Basel). 2019 Jul 9;19(13):3026. doi: 10.3390/s19133026.

Abstract

The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.

摘要

预计在不久的将来,连接的传感器和设备数量将增加到数十亿。然而,集中式云计算数据中心在满足物联网(IoT)工作负载固有的要求方面面临各种挑战,例如低延迟、高吞吐量和带宽限制。边缘计算正成为对延迟敏感的实时物联网工作负载的标准计算范式,因为它解决了与集中式云计算模型相关的上述限制。这种范式依赖于将计算靠近数据源,这给大规模云计算提供商带来了严峻的运营挑战。在这项工作中,我们提出了一种由靠近数据源的低成本单板计算机集群和集中式云计算数据中心组成的架构。所提出的具有成本效益的模型可以用作雾计算的替代方案,以满足实时物联网工作负载要求,同时保持可扩展性。我们进行了广泛的实证分析,以评估单板计算机集群作为具有成本效益的边缘计算微数据中心的适用性。此外,我们将所提出的架构与传统的云粒和云架构进行比较,并通过广泛的模拟对它们进行评估。我们最终表明,在数据密集型物联网用例中,在保持性能水平的同时,可以大幅降低购置成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a853/6650845/795e0185f01d/sensors-19-03026-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验