Suppr超能文献

结核病治疗患者的长期全因死亡率:系统评价和荟萃分析。

Long-term all-cause mortality in people treated for tuberculosis: a systematic review and meta-analysis.

机构信息

Provincial TB Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada.

Department of Medicine, University of British Columbia, Vancouver, BC, Canada.

出版信息

Lancet Infect Dis. 2019 Oct;19(10):1129-1137. doi: 10.1016/S1473-3099(19)30309-3. Epub 2019 Jul 16.

Abstract

BACKGROUND

Accurate estimates of long-term mortality following tuberculosis treatment are scarce. This systematic review and meta-analysis aimed to estimate the post-treatment mortality among tuberculosis survivors, and examine differences in mortality risk by demographic and clinical characteristics.

METHODS

We systematically searched Embase, MEDLINE, and the Cochrane Database of Systematic Reviews for cohort studies published in English between Jan 1, 1997, and May 31, 2018. We included research papers that used a cohort study design, included bacteriological or clinical confirmation of tuberculosis disease for all participants, and reported, or provided enough data to calculate, mortality estimates for people with tuberculosis and a valid control group representative of the general population. We excluded studies that reported duplicate data, had a study population of fewer than 50 people overall, had a follow-up period shorter than 12 months after treatment completion, or had a loss to follow-up of more than 30%. From eligible studies, we extracted standardised mortality ratios (SMRs), or calculated them when the data were sufficient, by dividing the sum of the observed deaths by the sum of the expected deaths. For studies that did not report SMR as their mortality estimate, either mortality hazard ratios or mortality rate ratios were extracted and pooled with SMRs. Random-effects meta-analysis was used to obtain pooled SMRs. Between-study heterogeneity was estimated with I. This study was prospectively registered in PROSPERO (CRD42018092592).

FINDINGS

Of the 7283 unique studies identified, data from ten studies, reporting on 40 781 individuals and 6922 deaths, were included. The pooled SMR for all-cause mortality among people with tuberculosis, compared with the control group, was 2·91 (95% CI 2·21-3·84; I=99%, p<0·0001). When restricted to people with confirmed treatment completion or cure, the pooled SMR was 3·76 (95% CI 3·04-4·66; I=95%). Effect estimates were similar when stratified by tuberculosis type, sex, age, and country income category. Causes of mortality were extracted for 4226 deaths that occurred post-treatment, with most deaths attributable to cardiovascular disease (20% [95% CI 15-26]; I=92%).

INTERPRETATION

People treated for tuberculosis have significantly increased mortality following treatment compared with the general population or matched controls. These findings support the need for further research to understand and address the biomedical and social factors that affect the long-term prognosis of this population.

FUNDING

None.

摘要

背景

准确估计结核病治疗后的长期死亡率是很少见的。本系统评价和荟萃分析旨在估计结核病幸存者的治疗后死亡率,并检查人口统计学和临床特征差异对死亡率风险的影响。

方法

我们系统地检索了 Embase、MEDLINE 和 Cochrane 系统评价数据库,以获取 1997 年 1 月 1 日至 2018 年 5 月 31 日期间发表的英文队列研究。我们纳入了使用队列研究设计的研究论文,这些研究对所有参与者都进行了细菌学或临床结核病确诊,并报告了结核病患者和具有代表性的一般人群的有效对照组的死亡率估计值,或提供了足够的数据来计算死亡率估计值。我们排除了重复数据报告、总体研究人群少于 50 人、治疗完成后随访期短于 12 个月或随访丢失率超过 30%的研究。从合格的研究中,我们提取了标准化死亡率比(SMR),或者在数据充足的情况下计算了 SMR,方法是将观察到的死亡人数除以预期死亡人数。对于未报告 SMR 作为其死亡率估计值的研究,提取了死亡率风险比或死亡率率比,并与 SMR 一起进行了汇总。使用随机效应荟萃分析获得汇总 SMR。通过 I 估计研究间的异质性。本研究在 PROSPERO(CRD42018092592)中进行了前瞻性注册。

结果

在 7283 项独特的研究中,有 10 项研究的数据被纳入,报告了 40781 人,死亡 6922 人。与对照组相比,所有原因导致的结核病患者死亡率的汇总 SMR 为 2.91(95%CI 2.21-3.84;I=99%,p<0.0001)。当限制为已确认完成治疗或治愈的患者时,汇总 SMR 为 3.76(95%CI 3.04-4.66;I=95%)。按结核病类型、性别、年龄和国家收入类别分层时,效应估计值相似。对治疗后发生的 4226 例死亡进行了死因提取,其中大多数死亡归因于心血管疾病(20%[95%CI 15-26];I=92%)。

解释

与一般人群或匹配的对照组相比,接受结核病治疗的患者在治疗后死亡率显著增加。这些发现支持进一步研究的需要,以了解和解决影响这一人群长期预后的生物医学和社会因素。

经费

无。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验