Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611.
McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610.
eNeuro. 2019 Aug 1;6(4). doi: 10.1523/ENEURO.0142-19.2019. Print 2019 Jul/Aug.
Local field potential (LFP) oscillations are primarily shaped by the superposition of postsynaptic currents. Hippocampal LFP oscillations in the 25- to 50-Hz range ("slow γ") are proposed to support memory retrieval independent of other frequencies. However, θ harmonics extend up to 48 Hz, necessitating a study to determine whether these oscillations are fundamentally the same. We compared the spectral analysis methods of wavelet, ensemble empirical-mode decomposition (EEMD), and Fourier transform. EEMD, as previously applied, failed to account for the θ harmonics. Depending on analytical parameters selected, wavelet may convolve over high-order θ harmonics due to the variable time-frequency atoms, creating the appearance of a broad 25- to 50-Hz rhythm. As an illustration of this issue, wavelet and EEMD depicted slow γ in a synthetic dataset that only contained θ and its harmonics. Oscillatory transience cannot explain the difference in approaches as Fourier decomposition identifies ripples triggered to epochs of high-power, 120- to 250-Hz events. When Fourier is applied to high power, 25- to 50-Hz events, only θ harmonics are resolved. This analysis challenges the identification of the slow γ rhythm as a unique fundamental hippocampal oscillation. While there may be instances in which slow γ is present in the rat hippocampus, the analysis presented here shows that unless care is exerted in the application of EEMD and wavelet techniques, the results may be misleading, in this case misrepresenting θ harmonics. Moreover, it is necessary to reconsider the characteristics that define a fundamental hippocampal oscillation as well as theories based on multiple independent γ bands.
局部场电位 (LFP) 振荡主要由突触后电流的叠加形成。在 25-50 Hz 范围内的海马体 LFP 振荡(“慢 γ”)被提议支持独立于其他频率的记忆检索。然而,θ 谐波扩展到 48 Hz,需要进行一项研究来确定这些振荡是否本质上是相同的。我们比较了小波、集合经验模态分解 (EEMD) 和傅里叶变换的频谱分析方法。以前应用的 EEMD 未能解释 θ 谐波。根据所选的分析参数,由于可变的时频原子,小波可能会卷积高阶θ谐波,从而产生宽的 25-50 Hz 节律的外观。作为这个问题的说明,小波和 EEMD 在仅包含θ及其谐波的合成数据集中描绘了慢 γ。由于傅里叶分解识别到高功率、120-250 Hz 事件的时期触发的涟漪,因此振荡瞬态不能解释方法之间的差异。当傅里叶应用于高功率、25-50 Hz 事件时,仅解析出θ谐波。这种分析挑战了将慢 γ 节律识别为独特的基本海马体振荡的观点。虽然在大鼠海马体中可能存在慢 γ 的情况,但这里呈现的分析表明,除非在应用 EEMD 和小波技术时小心谨慎,否则结果可能会产生误导,在这种情况下会错误表示θ谐波。此外,有必要重新考虑定义基本海马体振荡的特征以及基于多个独立 γ 带的理论。