Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.
Department of Clinical Genetics, section Complex Trait Genetics, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, The Netherlands.
Nat Commun. 2019 Jul 19;10(1):3222. doi: 10.1038/s41467-019-11181-1.
Single-cell RNA sequencing (scRNA-seq) data allows to create cell type specific transcriptome profiles. Such profiles can be aligned with genome-wide association studies (GWASs) to implicate cell type specificity of the traits. Current methods typically rely only on a small subset of available scRNA-seq datasets, and integrating multiple datasets is hampered by complex batch effects. Here we collated 43 publicly available scRNA-seq datasets. We propose a 3-step workflow with conditional analyses within and between datasets, circumventing batch effects, to uncover associations of traits with cell types. Applying this method to 26 traits, we identify independent associations of multiple cell types. These results lead to starting points for follow-up functional studies aimed at gaining a mechanistic understanding of these traits. The proposed framework as well as the curated scRNA-seq datasets are made available via an online platform, FUMA, to facilitate rapid evaluation of cell type specificity by other researchers.
单细胞 RNA 测序 (scRNA-seq) 数据可用于创建特定于细胞类型的转录组图谱。此类图谱可与全基因组关联研究 (GWAS) 进行比对,以提示特征的细胞类型特异性。目前的方法通常仅依赖于少数可用的 scRNA-seq 数据集,并且由于复杂的批次效应,整合多个数据集受到阻碍。在这里,我们整理了 43 个公开可用的 scRNA-seq 数据集。我们提出了一个 3 步工作流程,包括在数据集内和数据集之间进行条件分析,以规避批次效应,从而发现性状与细胞类型的关联。将此方法应用于 26 个性状,我们确定了多个细胞类型的独立关联。这些结果为后续旨在深入了解这些性状的机制的功能研究提供了起点。所提出的框架以及经过整理的 scRNA-seq 数据集可通过在线平台 FUMA 获得,以方便其他研究人员快速评估细胞类型特异性。