Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
Nat Rev Genet. 2019 May;20(5):273-282. doi: 10.1038/s41576-018-0088-9.
Single-cell RNA sequencing (scRNA-seq) allows researchers to collect large catalogues detailing the transcriptomes of individual cells. Unsupervised clustering is of central importance for the analysis of these data, as it is used to identify putative cell types. However, there are many challenges involved. We discuss why clustering is a challenging problem from a computational point of view and what aspects of the data make it challenging. We also consider the difficulties related to the biological interpretation and annotation of the identified clusters.
单细胞 RNA 测序 (scRNA-seq) 允许研究人员收集详细描述单个细胞转录组的大型目录。无监督聚类对于这些数据的分析至关重要,因为它用于识别可能的细胞类型。然而,这其中涉及许多挑战。我们将从计算角度讨论为什么聚类是一个具有挑战性的问题,以及数据的哪些方面使其具有挑战性。我们还考虑了与鉴定的聚类的生物学解释和注释相关的困难。