Suppr超能文献

无监督单细胞 RNA-seq 数据聚类的挑战。

Challenges in unsupervised clustering of single-cell RNA-seq data.

机构信息

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.

出版信息

Nat Rev Genet. 2019 May;20(5):273-282. doi: 10.1038/s41576-018-0088-9.

Abstract

Single-cell RNA sequencing (scRNA-seq) allows researchers to collect large catalogues detailing the transcriptomes of individual cells. Unsupervised clustering is of central importance for the analysis of these data, as it is used to identify putative cell types. However, there are many challenges involved. We discuss why clustering is a challenging problem from a computational point of view and what aspects of the data make it challenging. We also consider the difficulties related to the biological interpretation and annotation of the identified clusters.

摘要

单细胞 RNA 测序 (scRNA-seq) 允许研究人员收集详细描述单个细胞转录组的大型目录。无监督聚类对于这些数据的分析至关重要,因为它用于识别可能的细胞类型。然而,这其中涉及许多挑战。我们将从计算角度讨论为什么聚类是一个具有挑战性的问题,以及数据的哪些方面使其具有挑战性。我们还考虑了与鉴定的聚类的生物学解释和注释相关的困难。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验