Suppr超能文献

基于模型的重复实验最低观察效应浓度估计,以鉴定体外神经毒性的潜在生物标志物。

Model-based estimation of lowest observed effect concentration from replicate experiments to identify potential biomarkers of in vitro neurotoxicity.

机构信息

Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland.

出版信息

Arch Toxicol. 2019 Sep;93(9):2635-2644. doi: 10.1007/s00204-019-02520-8. Epub 2019 Jul 19.

Abstract

A paradigm shift is occurring in toxicology following the report of the National Research Council of the USA National Academies entitled "Toxicity testing in the 21st Century: a vision and strategy". This new vision encourages the use of in vitro and in silico models for toxicity testing. In the goal to identify new reliable markers of toxicity, the responsiveness of different genes to various drugs (amiodarone: 0.312-2.5 [Formula: see text]; cyclosporine A: 0.25-2 [Formula: see text]; chlorpromazine: 0.625-10 [Formula: see text]; diazepam: 1-8 [Formula: see text]; carbamazepine: 6.25-50 [Formula: see text]) is studied in 3D aggregate brain cell cultures. Genes' responsiveness is quantified and ranked according to the Lowest Observed Effect Concentration (LOEC), which is estimated by reverse regression under a log-logistic model assumption. In contrast to approaches where LOEC is identified by the first observed concentration level at which the response is significantly different from a control, the model-based approach allows a principled estimation of the LOEC and of its uncertainty. The Box-Cox transform both sides approach is adopted to deal with heteroscedastic and/or non-normal residuals, while estimates from repeated experiments are summarized by a meta-analytic approach. Different inferential procedures to estimate the Box-Cox coefficient, and to obtain confidence intervals for the log-logistic curve parameters and the LOEC, are explored. A simulation study is performed to compare coverage properties and estimation errors for each approach. Application to the toxicological data identifies the genes Cort, Bdnf, and Nov as good candidates for in vitro biomarkers of toxicity.

摘要

随着美国国家科学院国家研究理事会报告的发布,毒理学领域正在发生范式转变,该报告题为“21 世纪的毒理学测试:愿景与策略”。这一新愿景鼓励使用体外和计算模型进行毒性测试。为了确定新的可靠毒性标志物,研究了不同基因对各种药物(胺碘酮:0.312-2.5 [公式:见文本];环孢素 A:0.25-2 [公式:见文本];氯丙嗪:0.625-10 [公式:见文本];地西泮:1-8 [公式:见文本];卡马西平:6.25-50 [公式:见文本])的反应性。根据最低观察效应浓度(LOEC)对基因的反应性进行量化和排序,LOEC 是通过对数逻辑模型假设下的反向回归来估计的。与通过首次观察到的浓度水平确定 LOEC 的方法不同,基于模型的方法允许对 LOEC 及其不确定性进行有原则的估计。采用 Box-Cox 变换双侧方法处理异方差和/或非正态残差,同时通过荟萃分析方法总结重复实验的估计值。探讨了不同的推断程序来估计 Box-Cox 系数,并获得对数逻辑曲线参数和 LOEC 的置信区间。进行了模拟研究以比较每种方法的覆盖性能和估计误差。该方法应用于毒理学数据,确定基因 Cort、Bdnf 和 Nov 是体外毒性标志物的候选基因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验