Suppr超能文献

凸包辅助配准方法(CHARM)。

Convex Hull Aided Registration Method (CHARM).

出版信息

IEEE Trans Vis Comput Graph. 2017 Sep;23(9):2042-2055. doi: 10.1109/TVCG.2016.2602858. Epub 2016 Aug 31.

Abstract

Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.

摘要

非刚体配准在摄影测量、运动跟踪、模型检索和目标识别等领域有广泛应用。本文提出了一种新的基于凸壳的配准方法(CHARM),用于匹配两个受非刚体变换约束的点集。首先,从源点集和目标点集中分别提取两个凸壳。然后,通过每个凸壳的三角面,将点集中的所有点投影到参考平面上。从这些投影中,提取不变特征并进行最优匹配。将匹配的特征点对映射回凸壳的三角面上,以去除不在任何相关三角面内的离群点。通过随机抽样一致性(RANSAC)方案,通过最小化匹配特征点对之间的距离,稳健地估计源到目标的刚体变换。最后,这些特征点被用作控制点,通过薄板样条函数实现整个源点集到目标点集的非刚体变形。基于合成和真实数据的实验结果表明,与几种最先进的方法相比,该算法在采样、旋转角度和数据噪声方面具有更好的性能。此外,与这些方法相比,所提出的 CHARM 算法还具有更高的计算效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验