Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
BrainAlive Research Pvt Ltd, Kanpur, Uttar Pradesh, India.
Hum Brain Mapp. 2023 Jun 1;44(8):3324-3342. doi: 10.1002/hbm.26284. Epub 2023 Mar 29.
Accurate quantification of cortical engagement during mental imagery tasks remains a challenging brain-imaging problem with immediate relevance to developing brain-computer interfaces. We analyzed magnetoencephalography (MEG) data from 18 individuals completing cued motor imagery, mental arithmetic, and silent word generation tasks. Participants imagined movements of both hands (HANDS) and both feet (FEET), subtracted two numbers (SUB), and silently generated words (WORD). The task-related cortical engagement was inferred from beta band (17-25 Hz) power decrements estimated using a frequency-resolved beamforming method. In the hands and feet motor imagery tasks, beta power consistently decreased in premotor and motor areas. In the word and subtraction tasks, beta-power decrements showed engagements in language and arithmetic processing within the temporal, parietal, and inferior frontal regions. A support vector machine classification of beta power decrements yielded high accuracy rates of 74 and 68% for classifying motor-imagery (HANDS vs. FEET) and cognitive (WORD vs. SUB) tasks, respectively. From the motor-versus-nonmotor contrasts, excellent accuracy rates of 85 and 80% were observed for hands-versus-word and hands-versus-sub, respectively. A multivariate Gaussian-process classifier provided an accuracy rate of 60% for the four-way (HANDS-FEET-WORD-SUB) classification problem. Individual task performance was revealed by within-subject correlations of beta-decrements. Beta-power decrements are helpful metrics for mapping and decoding cortical engagement during mental processes in the absence of sensory stimuli or overt behavioral outputs. Markers derived based on beta decrements may be suitable for rehabilitation purposes, to characterize motor or cognitive impairments, or to treat patients recovering from a cerebral stroke.
准确量化心理意象任务期间的皮质参与仍然是一个具有挑战性的脑成像问题,与开发脑机接口具有直接的相关性。我们分析了 18 名个体在完成提示运动想象、心算和无声单词生成任务时的脑磁图 (MEG) 数据。参与者想象双手 (HANDS) 和双脚 (FEET) 的运动、减去两个数字 (SUB) 和无声生成单词 (WORD)。使用频率分辨波束形成方法估计的β频带 (17-25 Hz) 功率衰减推断出与任务相关的皮质参与。在手部和脚部运动想象任务中,β 功率在运动前和运动区域一致降低。在单词和减法任务中,β 功率衰减显示在颞叶、顶叶和下额叶区域内的语言和算术处理中的参与。β 功率衰减的支持向量机分类对运动想象 (HANDS 与 FEET) 和认知 (WORD 与 SUB) 任务的分类分别产生了 74%和 68%的高精度率。从运动与非运动对比来看,手与词和手与子的对比分别观察到 85%和 80%的高精度率。多元高斯过程分类器对手与脚、词与子、词与数、手与数这四个任务的分类问题提供了 60%的准确率。β 衰减的个体任务表现通过个体内相关的β 衰减来揭示。β 功率衰减是在没有感觉刺激或明显行为输出的情况下,映射和解码心理过程中皮质参与的有用指标。基于β 衰减的标记物可能适用于康复目的,用于描述运动或认知障碍,或治疗从脑卒中恢复的患者。