Suppr超能文献

采用新型多维相似云模型评价湖泊富营养化。

Assessment of lake eutrophication using a novel multidimensional similarity cloud model.

机构信息

Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.

Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.

出版信息

J Environ Manage. 2019 Oct 15;248:109259. doi: 10.1016/j.jenvman.2019.109259. Epub 2019 Jul 17.

Abstract

Lake eutrophication is characterized by a variety of indicators, including nitrogen and phosphorus concentrations, chemical oxygen demand, chlorophyll levels, and water transparency. In this study, a multidimensional similarity cloud model (MSCM) is combined with a random weighting method to reduce the impacts of random errors in eutrophication monitoring data and the fuzziness of lake eutrophication definitions on the consistency and reliability of lake eutrophication evaluations. Measured samples are assigned to lake eutrophication levels based on the cosine of the angle between the cloud digital characteristics vectors of each sample and those of each eutrophication grade. To field test this method, the eutrophication level of Nansi Lake in Shandong Province was evaluated based on monitoring data collected in 2009-2016. Results demonstrate that, in 2009 and in 2011-2015, the upper lake of Nansi Lake exhibited moderate eutrophication while the lower lake exhibited mild eutrophication. In 2010, 2016, elevated concentrations of total nitrogen and total phosphorus led to an increase in the eutrophication level of the lower lake, matching that of the upper lake. Based on the results of these field tests, we conclude that the MSCM presented in this study provides a more flexible and effective method for evaluating lake eutrophication data than the existing multidimensional normal cloud model.

摘要

湖泊富营养化的特征指标包括氮磷浓度、化学需氧量、叶绿素水平和水体透明度等。本研究采用多维相似云模型(MSCM)与随机加权法相结合,以降低富营养化监测数据中随机误差以及湖泊富营养化定义的模糊性对富营养化评价结果一致性和可靠性的影响。基于各样本的云数字特征向量与各富营养化等级的云数字特征向量之间的余弦值,对实测样本进行富营养化等级划分。为了进行现场测试,本研究利用 2009-2016 年的监测数据,对山东省南四湖的富营养化水平进行了评价。结果表明,2009 年和 2011-2015 年,南四湖上湖处于中营养状态,下湖处于轻度富营养化状态;2010 年和 2016 年,由于总氮和总磷浓度升高,下湖的富营养化水平上升,与上湖相匹配。通过这些现场测试,我们得出结论,与现有多维正态云模型相比,本研究提出的 MSCM 为评价湖泊富营养化数据提供了一种更灵活、有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验