Suppr超能文献

开发一种低成本的光学传感器,用于检测灌溉水库中的富营养化。

Development of a Low-Cost Optical Sensor to Detect Eutrophication in Irrigation Reservoirs.

机构信息

Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, Grao de Gandía, 46730 Valencia, Spain.

Finca "El Encin", Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), A-2, Km 38, 2, 28805 Alcalá de Henares, Spain.

出版信息

Sensors (Basel). 2021 Nov 17;21(22):7637. doi: 10.3390/s21227637.

Abstract

In irrigation ponds, the excess of nutrients can cause eutrophication, a massive growth of microscopic algae. It might cause different problems in the irrigation infrastructure and should be monitored. In this paper, we present a low-cost sensor based on optical absorption in order to determine the concentration of algae in irrigation ponds. The sensor is composed of 5 LEDs with different wavelengths and light-dependent resistances as photoreceptors. Data are gathered for the calibration of the prototype, including two turbidity sources, sediment and algae, including pure samples and mixed samples. Samples were measured at a different concentration from 15 mg/L to 4000 mg/L. Multiple regression models and artificial neural networks, with a training and validation phase, are compared as two alternative methods to classify the tested samples. Our results indicate that using multiple regression models, it is possible to estimate the concentration of alga with an average absolute error of 32.0 mg/L and an average relative error of 11.0%. On the other hand, it is possible to classify up to 100% of the samples in the validation phase with the artificial neural network. Thus, a novel prototype capable of distinguishing turbidity sources and two classification methodologies, which can be adapted to different node features, are proposed for the operation of the developed prototype.

摘要

在灌溉池塘中,过量的营养物质会导致富营养化,即大量微型藻类的生长。这可能会对灌溉基础设施造成不同的问题,因此应该进行监测。在本文中,我们提出了一种基于光学吸收的低成本传感器,用于确定灌溉池塘中藻类的浓度。该传感器由 5 个具有不同波长的 LED 和作为光感受器的光敏电阻组成。为了对原型进行校准,我们收集了包括两种浊度源(泥沙和藻类)在内的数据,包括纯样本和混合样本。样本的测量浓度范围为 15 毫克/升至 4000 毫克/升。我们将多元回归模型和人工神经网络(具有训练和验证阶段)进行了比较,这两种方法都是用于对测试样本进行分类的替代方法。我们的结果表明,使用多元回归模型,可以以平均绝对误差 32.0 毫克/升和平均相对误差 11.0%的精度来估计藻类的浓度。另一方面,人工神经网络可以在验证阶段对 100%的样本进行分类。因此,我们提出了一种新型原型,该原型能够区分浊度源,并提出了两种分类方法,这两种方法可以适用于不同的节点特征,用于开发原型的运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c24c/8619190/0548ef9fafc5/sensors-21-07637-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验