Gaines Colin S, Giese Timothy J, York Darrin M
Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
ACS Catal. 2019 Jul 5;9(7):5803-5815. doi: 10.1021/acscatal.9b01155. Epub 2019 May 22.
The catalytic properties of RNA have been a subject of fascination and intense research since their discovery over 30 years ago. Very recently, several classes of nucleolytic ribozymes have emerged and been characterized structurally. Among these, the twister ribozyme has been center-stage, and a topic of debate about its architecture and mechanism owing to conflicting interpretations of different crystal structures, and in some cases conflicting interpretations of the same functional data. In the present work, we attempt to clean up the mechanistic "debris" generated by twister ribozymes using a comprehensive computational RNA enzymology approach aimed to provide a unified interpretation of existing structural and functional data. Simulations in the crystalline environment and in solution provide insight into the origins of observed differences in crystal structures, and coalesce on a common active site architecture, and dynamical ensemble in solution. We use GPU-accelerated free energy methods with enhanced sampling to ascertain microscopic nucleobase values of the implicated general acid and base, from which predicted activity-pH profiles can be compared directly with experiments. Next, ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with full dynamic solvation under periodic boundary conditions are used to determine mechanistic pathways through multi-dimensional free energy landscapes for the reaction. We then characterize the rate-controlling transition state, and make predictions about kinetic isotope effects and linear free energy relations. Computational mutagenesis is performed to explain the origin of rate effects caused by chemical modifications and make experimentally testable predictions. Finally, we provide evidence that helps to resolve conflicting issues related to the role of metal ions in catalysis. Throughout each stage, we highlight how a conserved L-platform structural motif, to- gether with a key L-anchor residue, forms the characteristic active site scaffold enabling each of the catalytic strategies to come together not only for the twister ribozyme, but the majority of the known small nucleolytic ribozyme classes.
自30多年前被发现以来,RNA的催化特性一直是一个引人入胜且深入研究的课题。最近,几类核酸裂解核酶相继出现,并对其结构进行了表征。其中,扭结核酶一直处于核心地位,由于对不同晶体结构的解释相互矛盾,在某些情况下对相同功能数据的解释也相互矛盾,因此其结构和机制成为了一个争论的话题。在本研究中,我们试图利用全面的计算RNA酶学方法清理扭结核酶产生的机制“碎片”,旨在对现有的结构和功能数据提供统一的解释。在晶体环境和溶液中的模拟为观察到的晶体结构差异的起源提供了见解,并汇聚于一个共同的活性位点结构以及溶液中的动态系综。我们使用具有增强采样的GPU加速自由能方法来确定所涉及的广义酸碱的微观核碱基值,由此可以直接将预测的活性 - pH曲线与实验进行比较。接下来,在周期性边界条件下进行具有完全动态溶剂化的从头算量子力学/分子力学(QM/MM)模拟,以确定反应通过多维自由能景观的机制途径。然后我们表征速率控制的过渡态,并对动力学同位素效应和线性自由能关系进行预测。进行计算诱变以解释化学修饰引起的速率效应的起源,并做出可实验验证的预测。最后,我们提供的证据有助于解决与金属离子在催化中的作用相关的矛盾问题。在每个阶段,我们都强调了一个保守的L平台结构基序如何与一个关键的L锚定残基一起形成特征性的活性位点支架,使得每种催化策略不仅在扭结核酶中,而且在大多数已知的小核酸裂解核酶类别中得以共同发挥作用。