Suppr超能文献

催化场作为分析酶反应机制变体和反应步骤的工具。

Catalytic Fields as a Tool to Analyze Enzyme Reaction Mechanism Variants and Reaction Steps.

机构信息

Department of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.

出版信息

J Phys Chem B. 2021 Oct 28;125(42):11606-11616. doi: 10.1021/acs.jpcb.1c05256. Epub 2021 Oct 14.

Abstract

Catalytic fields representing the topology of the optimal molecular environment charge distribution that reduces the activation barrier have been used to examine alternative reaction variants and to determine the role of conserved catalytic residues for two consecutive reactions catalyzed by the same enzyme. Until now, most experimental and conventional top-down theoretical studies employing QM/MM or ONIOM methods have focused on the role of enzyme electric fields acting on broken bonds of reactants. In contrast, our bottom-up approach dealing with a small reactant and transition-state model allows the analysis of the opposite effects: how the catalytic field resulting from the charge redistribution during the enzyme reaction acts on conserved amino acid residues and contributes to the reduction of the activation barrier. This approach has been applied to the family of histidyl tRNA synthetases involved in the translation of the genetic code into the protein amino acid sequence. Activation energy changes related to conserved charged amino acid residues for 12 histidyl tRNA synthetases from different biological species allowed to compare on equal footing the catalytic residues involved in ATP aminoacylation and tRNA charging reactions and to analyze different reaction mechanisms proposed in the literature. A scan of the library of atomic multipoles for amino acid side-chain rotamers within the catalytic field pointed out the change in the Glu83 conformation as the critical catalytic effect, providing, at low computational cost, insight into the electrostatic preorganization of the enzyme catalytic site at a level of detail that has not yet been accessible in conventional experimental or theoretical methods. This opens the way for rational reverse biocatalyst design at a very limited computational cost without resorting to empirical methods.

摘要

催化场代表了降低激活能垒的最佳分子环境电荷分布的拓扑结构,可用于检查替代反应变体,并确定相同酶催化的两个连续反应中保守催化残基的作用。到目前为止,大多数使用 QM/MM 或 ONIOM 方法的实验和传统自上而下的理论研究都集中在酶电场对反应物断裂键的作用上。相比之下,我们采用的自下而上的方法处理小的反应物和过渡态模型,允许分析相反的效果:酶反应过程中电荷重新分布产生的催化场如何作用于保守的氨基酸残基,并有助于降低激活能垒。该方法已应用于涉及遗传密码翻译成蛋白质氨基酸序列的组氨酸 tRNA 合成酶家族。与来自不同生物物种的 12 种组氨酸 tRNA 合成酶的保守带电氨基酸残基相关的活化能变化允许在平等的基础上比较参与 ATP 氨酰化和 tRNA 充电反应的催化残基,并分析文献中提出的不同反应机制。在催化场中对氨基酸侧链旋转异构体的原子多极矩库进行扫描,指出 Glu83 构象的变化是关键的催化效应,以较低的计算成本深入了解酶催化位点的静电预组织,在常规实验或理论方法尚不可及的细节水平。这为以非常有限的计算成本进行合理的反向生物催化剂设计开辟了道路,而无需诉诸经验方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d6/8558854/197d2fc24bb8/jp1c05256_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验