Suppr超能文献

通过金属有机框架的化学气相沉积实现层状氧化石墨烯纳米片的物理膨胀及其热转化为用于超级电容器应用的氮掺杂多孔碳

Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal-Organic Frameworks and their Thermal Conversion into Nitrogen-Doped Porous Carbons for Supercapacitor Applications.

作者信息

Amer Wael A, Wang Jie, Ding Bing, Li Tao, Allah Abeer Enaiet, Zakaria Mohamed B, Henzie Joel, Yamauchi Yusuke

机构信息

International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.

出版信息

ChemSusChem. 2020 Mar 20;13(6):1629-1636. doi: 10.1002/cssc.201901436. Epub 2019 Aug 28.

Abstract

Graphene oxide (GO) nanosheets show good electrical conductivity and corrosion resistance in electrochemical devices. However, strong van der Waals attraction between adjacent nanosheets causes GO materials to collapse, reducing the exposed surfaces and limiting electron/ion transport in porous electrodes. GO nanosheets mixed with Zn (OH) (NO ) ⋅2 H O (ZnON) nanoplates create a layered composite structure. Exposing the resultant GO/ZnON to 2-methylimidazole vapor leads to the conversion of ZnON into the zeolitic imidazolate framework ZIF-8. The transformation of ZnON into ZIF-8 leads to a huge physical expansion of the interlayer space between the GO sheets. Annealing the material at high temperature caused the ZIF-8 to be converted into highly porous nitrogen-doped carbon, but the GO nanosheets maintained a large separation and high surface area. The morphology and porous structure of the post-annealing carbon material was sensitive to the initial ratio of ZnON to GO. The optimized sample exhibited several favorable features, including a large surface area, high degree of graphitization, and a high amount of nitrogen doping. Using chemical vapor deposition of metal-organic frameworks to physically expand nanomaterials is a novel method to increase the surface area and porosity of materials. It enabled the synthesis of nanoporous carbon electrodes with high capacitance, good rate capability, and long cyclic stability in supercapacitor devices.

摘要

氧化石墨烯(GO)纳米片在电化学装置中表现出良好的导电性和耐腐蚀性。然而,相邻纳米片之间强烈的范德华引力会导致GO材料坍塌,减少暴露表面并限制多孔电极中的电子/离子传输。将GO纳米片与Zn(OH)(NO₃)·2H₂O(ZnON)纳米片混合可形成层状复合结构。将所得的GO/ZnON暴露于2-甲基咪唑蒸气中会导致ZnON转化为沸石咪唑酯骨架ZIF-8。ZnON向ZIF-8的转变导致GO片层之间的层间空间发生巨大的物理膨胀。在高温下对该材料进行退火会使ZIF-8转化为高度多孔的氮掺杂碳,但GO纳米片保持较大的间距和高表面积。退火后碳材料的形态和多孔结构对ZnON与GO的初始比例敏感。优化后的样品表现出几个有利特性,包括大表面积、高石墨化程度和高氮掺杂量。利用金属有机框架的化学气相沉积来物理扩展纳米材料是一种增加材料表面积和孔隙率的新方法。它能够在超级电容器装置中合成具有高电容、良好倍率性能和长循环稳定性的纳米多孔碳电极。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验